• Title/Summary/Keyword: $ZnCl_2$

Search Result 693, Processing Time 0.026 seconds

Solvent Extraction of Zinc from Strong Hydrochloric Acid Solution with Alamine336

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1526-1530
    • /
    • 2009
  • Solvent extraction reaction of Zn(II) by Alamine336 from strong HCl solution up to 10 M was identified by analyzing the data reported in the literature. The equilibrium constant of this reaction was estimated by considering the complex formation between zinc and chloride ion. The necessary thermodynamic parameters, such as equilibrium constant for the formation of complexes and the interaction parameters, were evaluated from the thermodynamic data reported in the literature. The following solvent extraction reaction and the equilibrium constant was obtained by considering the activity coefficients of solutes present in the aqueous phase with Bromley equation. $Zn^{2+}\;2Cl^{-}\;+\;R_3NHCl_{org}\;=\;ZnCl_3R_3NH_{org},\;K_{ex}\;=\;6.33\;{\times}\;10^2$ There was a good agreement between measured and calculated distribution coefficients of Zn(II).

Corrosion behavior of Mg-(0~6)%Zn Casting Alloys in 1M NaCl Solution (1M NaCl 용액에서 Mg-(0~6)%Zn 주조 합금의 부식 거동)

  • Hwang, In-Je;Kim, Young-Jig;Jun, Joong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.36 no.4
    • /
    • pp.117-125
    • /
    • 2016
  • The effects of the Zn content on the microstructure and corrosion behavior in 1M NaCl solution were investigated in Mg-(0~6)%Zn casting alloys. The MgZn phase was scarcely observed in the Mg-1%Zn alloy, while the Mg-(2~6)%Zn alloy consisted of ${\alpha}$-(Mg) and MgZn phases. With an increase in the Zn content, the amount of the MgZn phase was gradually increased. Immersion and electrochemical corrosion tests indicated that the Mg-1%Zn alloy had the lowest corrosion rate among the alloys, and a further increase in the Zn content resulted in the deterioration of the corrosion resistance. Microstructural examinations of the corroded surfaces and EIS analyses of surface corrosion films revealed that the best corrosion resistance at 1%Zn was associated with the absence of MgZn phase particles in the microstructure and the contribution of Zn element to the formation of a protective film on the surface. A micro-galvanic effect by the MgZn particles led to the increased rate of corrosion at a higher Zn content.

Stability of Tris(2-cyclohexylaminoethyl)amine-Zn(II) Complex (Tris(2-cyclohexylaminoethyl)amine-Zn(II) 착물의 안정성)

  • Yong Woon Shin;Hyun Sook Baek;Jae-Kyung Yang;Jineun Kim;Moo Lyong Seo
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • Tris(2-cyclohexylaminoethyl)amine (L) was synthesized by the Schiff base condensation reaction of tris(2-aminoethyl)amine with cyclohexanone, followed by reduction. The thermodynamic characteristics, mole ratio and formation constant of [Zn(II)-L] complex were measured by the cyclic voltammetry and isothermal titration. In the case of Zn(II), well-defined cathodic and anodic peak were obtained at -1.02V and -0.48V vs Ag/AgCl , respectively. For the [Zn(II)-L] complex, both peaks were obtained at -1.19V and -0.45V vs Ag/AgCl, respectively. In addition, the peak height gradually increases as the scan rate increases, suggesting that the currents obtained were diffusion - controlled. The mole ratio and stability constant of the complex measured cyclic voltammerty were 1:1 and logK$_f$= 5.8, respectively. And the mole ratio and stability constant of the complexe calculated by isothermal titration method was 1:1 and logK =5.4, respectively. ${\Delta}$H, ${\Delta}$G and T${\Delta}$S for the complex formation were -53.0 kJ/mol, -31.1 kJ/mol, and -21.9 J/K at 25 ${\circ}$C, respectively.

Damage on the Surface of Zinc Oxide Thin Films Etched in Cl-based Gas Chemistry

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) thin films deposited by the atomic layer deposition method. The gases of the inductively coupled plasma chemistry consisted of $Cl_2$, Ar, and $O_2$. The maximum etch rate was 40.3 nm/min at a gas flow ratio of $Cl_2$/Ar=15:5 sccm, radio-frequency power of 600 W, bias power of 200 W, and process pressure of 2 Pa. We also investigated the plasma induced damage in the etched ZnO thin films using X-ray diffraction (XRD), atomic force microscopy and photoluminescence (PL). A highly oriented (100) peak was present in the XRD spectroscopy of the ZnO samples. The full width at half maximum value of the ZnO sample etched using the $O_2/Cl_2$/Ar chemistry was higher than that of the as-deposited sample. The roughness of the ZnO thin films increased from 1.91 nm to 2.45 nm after etching in the $O_2/Cl_2$/Ar plasma chemistry. Also, we obtained a strong band edge emission at 380 nm. The intensities of the peaks in the PL spectra from the samples etched in all of the chemistries were increased. However, there was no deep level emission.

Electric Conduction Properties of NaCl Electrolyte as a Function of Electrode Materials (전극재료에 따른 NaCl 전해질의 전기전도특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2026-2031
    • /
    • 2010
  • The electrical characteristics of galvanic cell which is composed of the cathode electrode(graphite, carbon and copper) and the anode electrode(Zn and Mg) were investigated. For this research as electrolyte 2~12 wt% NaCl aqueous solution were used. At graphite cathode electrodes which use Zn and Mg with the anode electrode, the open circuit voltage was 1.3V most highly. The maximum output power increased as the electrolyte concentration increased, due to a increase in ion density. When Zn and Mg with the anode electrode, the maximum output power respectively was evaluated as 2.2mW and 5.5mW about the graphite cathode electrode in the NaCl 4wt%. The research results indicated that the output power of cell which is composed with graphite with the cathode and Mg with the anode was most excellent and the efficiency of the cell could be enhanced by increasing the electrolyte concentration.

The optical properties dependent on different doping concentrations of activators Cu2+ and in ZnS:Mn,Cu,Cl phosphor (활성제 Cu2+ 및 도핑농도에 따른 ZnS:Mn,Cu,Cl 형광체의 광학적 특성)

  • Han, Sang-Do;Kwon, Ae-Kyung;Lee, Hak-Soo;Han, Chi-Hwan;Kim, Jung-Duk;Gwak, Ji-Hye
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.323-327
    • /
    • 2006
  • Manganese, copper and chlorine-doped ZnS phosphors (ZnS:Mn,Cu,Cl) were synthesized through solid-state reaction. Manganese was added in the range of amount $1.4{\sim}5.3$ mol % to ZnS phosphors containing 0.2 or 1.0 mol % of copper and a small amount of chlorine. As-synthesized phosphors showed a spherical morphology with a mean size of ${\sim}20\;{\mu}m$ and structural properties of Wurtzite, which were identified by SEM and XRD, respectively. Optical properties of ZnS:Mn,Cu,Cl synthesized with various concentrations of activators were analysed by both of PL and EL spectra. Samples mainly showing only 580 nm-orange emission by 380 nm-UV excitation gave different EL spectra of blue, green, and orange emissions at 450, 480 and 580 nm, respectively, depending on concentrations of $Cu^{2+}$ and $Mn^{2+}$.

The Effects of Oxidation Conditions on the Magnetic Properties of Cu-Zn Ferrite Powder (산화 조건에 따른 Cu-Zn Ferrite분말의 자기적 특성)

  • Shin, K.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.222-224
    • /
    • 1993
  • In this paper, The optimum oxidation conditions for the formation of Cu-Zn ferrite were investigated using precipitates obtained by the mixture of $CuCl_2{\cdot}2H_2O$, $ ZnCl_2$, $FeCl_3{\cdot}6H_2O$ and NaOH. The precipitates were prepared by coprecipitation method on various temperatures and oxidation conditions. The oxidation products were examined by SEM, XRD, and VSM. The particles obtained at 70($^{\circ}C$) were more spherical and fine than that of prepared at 25($^{\circ}C$), 50($^{\circ}C$), 60($^{\circ}C$), respectively. By $H_2O_2$ oxidation, the saturation magnetization of the powders was little influenced, But, by air oxidation the saturation magnetization of the powders was influenced intricately. According to our experimental data, the saturation magnetization of the powders increased with reaction time and was saturated at 9 hours.

  • PDF

Chemical Modification of Silk by Ethylene Cyanohydrin (에틸렌 시아노히드린에 의한 실크의 화학적 개질)

  • Lee, Geun-Souk;Bae, Do-Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.26
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, when the silk fabric was modified by ethylene cyanohydrine, the reaction mechanism between both was studied at various treatment conditions such as curing temperatures and times, ethylene cyanohydrin concentrations and $ZnCl_2$ concentrations. Through the FT-IR and DSC analyses of the treated silk fabrics, we found the results as follows : It was observed in FT-IR analysis of the treated silk fabrics that the -OH characteristic peak($3,450cm^{-1}$)position and shape were all changed when drying and curing treatment conditions were at $80^{\circ}C$ for 3 minute and $110^{\circ}C$ for 2.5 minute, and the concentration of the $ZnCl_2$ was 0.1%. It indicated that the -OH group of the silk participated in the reaction between the silk fabric and ethylene cyanohydrin. From the DSC analysis, it was found that the pyrolysis temperatures of the treated silk fabrics by ethylene cyanohydrin which was processed in the same condition, were all increased from $311^{\circ}C$ to ab. $320^{\circ}C$. From the FT-IR analyses of the silk fabrics treated by ethylene cyanohydrin at the various concentrations of $ZnCl_2$, it was found that the -OH characteristic peaks($3,450cm^{-1}$) were similar to the nontreated one except that of the fabric treated at the $ZnCl_2$ conconcentration of 0.8% when drying and curing treatment conditions were at $80^{\circ}C$ for 3minute and $110^{\circ}C$ for 2.5 minute, and the concentration of the ethylene cyanohydrin was 5%. In the case of the $ZnCl_2$ concentration of 0.8% solution, a lot of change were observed in peak. From the DSC analysis of the treated silk fabrics which was processed in the same condition, it was showed that the pyrolysis temperatures of treated silk fabric were all increased from $311^{\circ}C$ to ab. $320^{\circ}C$, which was no relation with the concentration of $ZnCl_2$.

  • PDF

The Thermal Behavior and Removal of Chloride in EAF Dust (EAF Dust중 염화물의 거동과 제거에 관한 연구)

  • 김영환;김종학;고인용;문석민;이대열;신형기;오재현
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 1997
  • This study was carried out to find the existing forms of chlorlnc in EM dust and to understand the valaliliratian behavior and the removal of chlorine from EAF dust with lemperalure and heating almosphere The chemical compositions of dust A are 27.3%Fe. 21.8%3Zn, 3 15%Pb, 3 51%C1 and that of dust B BE 33.92%Fe, 15.94%Zn, 2.73% Pb, 3.98%Cl. The XRD analysis and water leaching test shows that chlorlne in EM dust exist mainly as NaCI, KCI, Pb (0H)Cl. Above 99% of chlorine was volatilized when dust was hentcd in alr atmosphere at 1100$^{\circ}$C h r 1 hour and that was 96% when heated in reduction atmosnherc at 1100$^{\circ}$C for 1 hour.

  • PDF

Reaction and Theoretical Study of the Coordination of an N2O-Donor Amino Alcoholic Ligand Toward Group 12 Metals Mixtures

  • Mardani, Zahra;Moeini, Keyvan;Kazemshoar-Duzduzani, Reza
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.160-165
    • /
    • 2019
  • A series of reactions between an amino alcoholic ligand, cis-2-((2-((2-hydroxyethyl)amino)ethyl)amino)cyclohexan-1-ol (HEAC), with the mixtures of group 12 metals including, $HgCl_2/CdCl_2$, $HgCl_2/CdI_2$, $ZnCl_2/CdCl_2$ and $ZnCl_2/CdCl_2/HgCl_2$ was experimentally and theoretically studied to determine the most stable product of these reactions. Furthermore, the Cambridge Structural Database (CSD) studies were done to evaluate the theoretical results. The products were characterized by elemental analysis, FT-IR, Raman, $^1H$ NMR spectroscopy and single-crystal X-ray diffraction. Based on these investigations a binuclear structure of cadmium, [$Cd_2(HEAC)_2({\mu}-Cl)_2Cl_2$] (1), is the most stable product that was formed in all studied reactions between HEAC and metals mixtures. In this structure, the cadmium atom has a $CdN_2O({\mu}-Cl)_2Cl$ environment and distorted octahedral geometry.