• 제목/요약/키워드: $Wnt/{\beta}-catenin$ signal

검색결과 13건 처리시간 0.019초

Wnt 신호 전달 연구의 최신 지견 (Current Status of Research in Wnt Signal Transduction)

  • 김완태;차복식;조익훈
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.141-153
    • /
    • 2007
  • Wnt 신호 전달 과정은 다세포 생물체의 발생 과정에서 세포의 증식이나 분화를 조절하거나 성인 조직에서 항상성을 유지하는데 결정적인 역할을 한다. 따라서 Wnt 신호 전달의 조절에 이상이 생기면 암을 비롯한 다양한 질병이 유발되어진다. 최근 들어서 Wnt 신호 전달의 이상에 의해 유도될 것이라고 생각되어지는 질병의 수가 많아져서, Wnt 신호 전달의 조절에 관심을 갖는 연구자가 많아지고 있다. 많은 리뷰 논문이 출판되었지만, 대부분의 경우 Wnt 전문가들을 위한 특정 논제를 다루는 경우가 많기 때문에, 처음으로 Wnt 신호 전달을 연구하고자 하는 연구자들이 Wnt 신호 전달의 전체적인 흐름을 파악하는데 어려움을 겪는 예가 있다. 본 총설에서는 Wnt 신호 전달 과정을 전체적으로 설명함으로써 Wnt 신호 전달에서 우리가 알고 있는 사실과 앞으로 연구되어야 할 내용들을 이해하고자 한다.

  • PDF

Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells

  • Kim, Eun-Cheol;Park, Jaesuh;Kwon, Il Keun;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제47권5호
    • /
    • pp.273-291
    • /
    • 2017
  • Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. Results: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) and total ${\beta}-catenin$ protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) pathways were activated. Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.

Signal Transducer and Activator of Transcription 3 - A Promising Target in Colitis-Associated Cancer

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.551-560
    • /
    • 2014
  • Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)-${\kappa}B$, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, $Wnt/{\beta}$-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.