• Title/Summary/Keyword: $WO_3/TiO_2$

Search Result 144, Processing Time 0.023 seconds

Removal of NOx from Graphene based Photocatalyst Ceramic Filter (그래핀 기반 광촉매 담지 세라믹필터에서 질소산화물(NOx)의 제거)

  • Kim, Yong-Seok;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.600-605
    • /
    • 2022
  • In this study, nitrogen oxide (NOx) removal experiments were performed using a graphene based ceramic filter coated with a V2O5-WO3-TiO2 catalyst. Graphene oxide (GO) was prepared by Hummer's method using graphite, and the reduced graphene oxide was produced by reducing with hydrazine (N2H4). Vanadium (V), Tungsten (W), and Titanium (Ti) were coated by the sol-gel method, and then a metal oxide-supported filter was prepared through a calcination process at 350 ℃. A NOx removal efficiency test was performed for the catalytic ceramic filters with UV light in a humid condition. When graphene oxide (GO) and reduced graphene oxide (rGO) were present on the filter, the NOx removal efficiency was superior to that of the conventional ceramic filter. Most likely, this is due to an improvement in the adsorption properties of NOx molecules on graphene coated surfaces. As the concentration of graphene increased, higher NOx removal efficiency was confirmed.

Growth of vertically aligned metal oxide nanorods on CuO film

  • Kim, Ji-Min;Jeong, Hyeok;Lee, Hwan-Pyo;Yun, Sun-Gil;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.79.2-79.2
    • /
    • 2012
  • In this work, vertically aligned metal oxide nanorods(ZnO, $TiO_2$, $WO_3$) were grown onto CuO film at the room temperature. The fabricated nanorods of 90nm~500nm diameter range and $1{\mu}m{\sim}15{\mu}m$ of length range. Growth of metal oxide nanorods only depends on thickness of CuO film in this method, and it is grown at both of room temperature and high temperature. That means, it is much faster mathod to make the vertical metal oxide nanorods than old method such as hydrothermal method.

  • PDF

Application of SNCR/SCR Combined process for effective operation of SCR Process

  • 최성우;최상기
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH$_3$/O$_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O$_2$. Commercial catalyst, sulfated V$_2$O$\_$5/-WO$_3$/TiO$_2$, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h$\^$-1/ and 6,000 h$\^$-1/ in the SNCR and SCR reactors, respectively. SNCR NOx reduction effectively occurred in a temperature window of 900-950$^{\circ}C$. About 88% NOx reduction was achieved with an optimum temperature of 950$^{\circ}C$ and NSR=1.5. SCR NOx reduction using commercial V$_2$O$\_$5/-WO$_3$-SO$_4$/TiO$_2$ catalyst occurred in a temperature window of 200-450$^{\circ}C$ 80-98% NOxreduction was possible with SV=2400 h$\^$-1/ and a molar ratio of 1.0-2.0. A SNCR/SCR(SV=6000 h$\^$-1/) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h$\^$-1/) unit process of 98% NOx reduction. The NH$_3$-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH$_3$ slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900$^{\circ}C$-950$^{\circ}C$, and SCR space velocity of 6000 h$\^$-1/. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of T$\_$SNCR/=950$^{\circ}C$, T$\_$SCR/=350$^{\circ}C$, 5% O$_2$, SV=6000 h$\^$-1/ and NH$_3$/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.

Characterization analysis of SCR catalyst contained recycling Aluminium dross (재활용 된 알루미나를 포함한 SCR 탈질 촉매의 특성 분석)

  • Bae, Min-A;Kim, Hong-Dae;Kim, Kwang-Ho;Lee, Man-Sig
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.496-498
    • /
    • 2011
  • 본 논문에서는 알루미늄 드로스를 재활용하여 생성 된 수산화알루미늄을 이용하여 질소산화물 제거 SCR 촉매를 제조하였다. 현재 상용중인 촉매와 화학적 특성과 질소산화물 제거 효율을 비교하기 위해 동일 타입의 하니컴 형태의 $V_2O_5-WO_3-TiO_2-Al_2O_3$ SCR 촉매를 제조하였으며, XRF와 BET를 사용하여 화학적 특성을 평가 비교하였다. 또한 MR(Micro Reactor)을 이용하여 $350^{\circ}C$$450^{\circ}C$에서 질소산화물 제거 평가를 실시하였으며, 평가 결과 80~90%의 제거 효율을 확인하였다.

  • PDF

Fabrication of LTCC Tape and Its Microwave Dielectric Properties (LTCC Tape 제조 및 고주파 유전특성 평가)

  • Lee, Kyoung-Ho;Choi, Byung-Hoon;Ahn, Dal;Sung, Jung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.382-385
    • /
    • 2001
  • In the previous study, a new LTCC material in the $PbWO_{4}-TiO_{2}-B_{2}O_{3}-CuO$ system was introduced. The developed material can be sintered at $850^{\circ}C$ and its dielectric properties are $\varepsilon_{r}=20-25$, $Q{\times}f_{o}=30000\sim50000GHz$, and $\tau_{f}=0.2{\sim}30ppm/^{\circ}C$, respectively. Therefore this material can be used as a LTCC substrate material for fabrication of multilayered high frequency communication module set. In present study, using this material, tape casting condition was established. With this condition, a multilayered resonator was fabricated and its electrical properties were examined. In present study, an antenna-duplexer module was also fabricated. Frequency characteristics of as-fabricated antenna-duplexer module was compared with simulation results.

  • PDF

Fabrication of LTCC Tape and Its Microwave Dielectric Properties (LTCC Tape 제조 및 고추파 유전특성 평가)

  • Lee, Kyoung-Ho;Choi, Byung-Hoon;Ahn, Dal;Sung, Jung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.382-385
    • /
    • 2001
  • In the previous study, a new LTCC material in the PbWO$_4$-TiO$_2$-B$_2$O$_3$-CuO system was introduced. The developed material can be sintered at 850$^{\circ}C$ and its dielectric properties are $\varepsilon$$\sub$r/=20-25, Qxf$\sub$o/=30000∼500000Hz, and $\tau$$\sub$f/=0.2∼30ppm/$^{\circ}C$, respectively Therefore this material can be used as a LTCC substrate material for fabrication of multilayered high frequency communication module set. In present study, using this material, tape casting condition was established. With this condition, a multilayered resonator was fabricated and its electrical properties were examined. In present study, an antenna-duplexer module was also fabricated. Frequency characteristics of as-fabricated antenna-duplexer module was compared with simulation results.

  • PDF

Effects of Crystal Structure on Microwave Dielectric Properties of Ceramics

  • Kim, Eung-Soo;Jeon, Chang-Jun;Kim, Sung-Joo;Kim, Su-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.251-255
    • /
    • 2008
  • Microwave dielectric properties of $MgTiO_3,\;MgWO_4,\;MgNb_2O_6$, and $MgTa_2O_6$ were investigated based on the structural characteristics. The dielectric constant (K) was dependent on the dielectric polarizabilities of the specimens, and the deviation of the observed dielectric polarizabilities (${\alpha}_{obs.}$) from the theoretical dielectric polarizabilities (${\alpha}_{theo.}$) were decreased with increasing of Mg-site bond valence. Quality factors (Qf) were affected by the sharing type of $MgO_6$ and $BO_6$ octahedra. Temperature coefficient of resonant frequency (TCF) was decreased with increasing of average octahedral distortion.

Improvement of Bleaching Performance of Photosensitive Electrochromic Device by the Additive of TEMPOL (TEMPOL 첨가제 적용에 의한 광감응형 전기변색 소자 탈색성능 향상)

  • Song, Seung Han;Park, Hee sung;Cho, Churl Hee;Hong, Sungjun;Han, Chi-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.209-217
    • /
    • 2022
  • We have developed photosensitive electrochromic smart windows that does not require any transparent conducting oxide (TCO) substrate. In our previous study, we demonstrated that a flexible film-type device made with a low temperature curing WO3 sol and TiO2 sol could show a reversible and rapid switching between colored and bleached state via incorporation of platinum catalysts on the surface of WO3 layer. However, when these devices were exposed to sunlight over 4 hour, it was confirmed that they did not return to fully bleached state in the darkened state due to their overcoloring process. In this study, we added 4-hydroxy-(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPOL) as an additive to the electrolyte of photosensitive electrochromic device to effectively prevent the undesired overcoloring process. The resulting device with TEMPOL indeed did not undergo excessive coloration and showed great reversibility even after being exposed to sunlight for over 4 hours. Various concentrations of TEMPOL were applied to compare changes in the visible transmittance and coloring/bleaching kinetics of devices. In terms of energetic point of view, we proposed a plausible mechanism of TEMPOL to prevent excessive coloration.

A Study of $NH_3$ Adsorption/Desorption Characteristics in the Monolithic $NH_3-SCR$ Reactor (모노리스 $NH_3-SCR$ 반응기 내에서의 $NH_3$ 흡.탈착 특성에 대한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook;Jung, Myung-Geun;Yeo, Gwon-Koo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • Transient kinetics of $NH_3$ adsorption/desorption and of SCR(selective catalytic reduction) of NO with $NH_3$ were studied over vanadium based catalysts, such as $V_2O_5/TiO_2$ and $V_2O_5-WO_3/TiO_2$. In the present catalytic reaction process, NO adsorption is neglected while $NH_3$ is strongly chemisorbed on the catalytic surface. Accordingly, it is ruled out the possibility of a reaction between strongly adsorbed $NH_3$ and NO species in line with the hypothesis of an Eley-Rideal mechanism. The present kinetic model assumes; (1) non-activated $NH_3$ adsorption, (2) Temkin-type $NH_3$ coverage dependence of the desorption energy, (3) non-linear dependence of the SCR reaction rate on the $NH_3$ surface coverage. Thus, the surface heterogeneity for adsorption/desorption of $NH_3$ is taken into account in this model. The present study extends the pure chemical kinetic model based on a powdered-phase catalytic system to the chemico-physical one applicable to a realistic monolith reactor.