• Title/Summary/Keyword: $WO_3$ gas sensor

Search Result 61, Processing Time 0.029 seconds

Highly Selective and Sensitive Detection of Acetone by ZnWO4-WO3 Hetero-composite Spheres

  • Ki Beom Kim;Myung Sung Sohn;Seong-Young Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.237-241
    • /
    • 2024
  • ZnWO4-WO3 hetero-composite microspheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn and W cations, followed by heat treatment at 600℃. The gas-sensing characteristics of 5 at% of Zn-added WO3 (5Zn-WO3; ZnWO4-WO3 hetero-composite) microspheres to 1 ppm acetone, ethanol, 20 ppm hydrogen (H2), 5 ppm carbon monoxide (CO), 25 ppb toluene, and 5 ppm ammonia (NH3) were measured at 325-400℃ under 80% relative humidity (RH). The sensor using 5Zn-WO3 microspheres exhibited highly selective and sensitive gas-sensing properties to acetone at 375℃ even under high humidity conditions. These superior gas-sensing properties were attributed to the increased resistance (electronic sensitization) through n-n heterojunction formation between WO3 and ZnWO4 phases and the acidic property of WO3, which exhibited a low gas response to interfering ethanol gas. The superior acetone gas-sensing characteristics of the 5Zn-WO3 sensor can be utilized in breath acetone analyzers for rapid, real-time ketogenic diet monitoring.

Fabrication and Gas-Sensing Characteristics of $NO_x$ Sensors using $WO_3$ Thin Films ($WO_3$ 박막을 이용한 $NO_x$ 센서의 제조 및 가스감도 특성)

  • 유광수;김태송;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1369-1376
    • /
    • 1995
  • The WO3 thin-film NOx sensor which is of practical use and includes the heater and the temperature sensor was fabricated. The WO3 thin films as a gas-sensing layer was deposited at ambient temperature in a high-vacuum resistance heated evaporator. The highest sensitivity of the WO3 thin-film sensor to NOx was obtained under the condition of the annealing temperature of 50$0^{\circ}C$ and the operating temperature of 30$0^{\circ}C$. The gas sensing characteristics of this sensor was excellent, i.e. high sensitivity (Rgas/Rair in 3 ppm NO2=53) and fast response time (4 seconds).

  • PDF

NOx Sensing Characteristics of the $WO_{3}$-Based Thin-Film Gas Sensors (박막형 $WO_{3}$계 가스센서의 NOx 감도 특성)

  • Yoo, Kwang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.39-46
    • /
    • 1996
  • The Pd or Pt-doped $WO_{3}$ thin-film NOx sensor was fabricated. The $WO_{3}$-based thin films as a gas-sensing layer were deposited at ambient temperature in a high-vacuum resistance heated evaporator and annealed at $500^{\circ}C$. The gas sensitivity ($R_{gas}/R_{air}$) to 5 ppm $NO_{2}$ measured at the operating temperature of $300^{\circ}C$ was 50 (highest sensitivity) for the 0.5 wt.% $Pt-WO_{3}$ sensor.

  • PDF

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Characteristics of CuO doped WO3 Thick Film for Gas Sensors (CuO가 첨가된 WO3 후막 가스센서 특성 연구)

  • Yu, Il;Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Yoon-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1621-1625
    • /
    • 2010
  • Recently, due to increase in the usage of toxic gas and inflammability gas, the ability to monitor and precisely measurement of these gases is crucial in preventing the occurrence of various accidents. CuO doped and undoped $WO_3$ thick films gas sensors were prepared using screen-printing method on alumina substrates. A structural properties of $WO_3$:CuO thick films had monoclinic phase and triclinic phase of $WO_3$ together. Sensitivity of $WO_3$:CuO sensor at 2000 ppm of $CO_2$ gas and 50 ppm of $H_2S$ gas was investigated. 4 wt% Cu doped $WO_3$ thick films had the highest sensitivity of $CO_2$ gas and $H_2S$ gas.

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method (Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향)

  • Kim, Suk-Bong;Lee, Dae-Sik;Lee, Duk-Dong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2001
  • When particles are dissolved in solution, they have different zeta-potentials depending on pH. Zeta-potential has an influence on particle separation, which can control particle size. And the size of $WO_3$ particle affects the sensitivity of $WO_3$ sensor for detecting NO gas. Therefore we study influence of pH on NO-sensing $WO_3$ gas sensor fabricated by Sol-Coprecipitation method. As pH increases from 2 to 7, dynamic mobility of $WO_3$ precursor was increased. When pH was 7, it showed the largest distribution separation. It means when pH is 7, we can make $WO_3$ powder which has smaller particle size. And it is confirmed by particle size analysis of $WO_3$ powder, X-ray diffration result of $WO_3$ sensing layer and surface morphology. It also affect NO sensing characteristics of $WO_3$ gas sensor. The sensing film synthesized at pH 7 showed the largest sensitivity.

  • PDF

Gas Sensing Characteristics of WO3:In2O3 Prepared by Ball-mill Time (볼밀시간에 의한 WO3:In2O3 가스센서의 감응특성)

  • Shin, Deuck-Jin;Yu, Yun-Sik;Park, Sung-Hyun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.299-302
    • /
    • 2011
  • [ $WO_3$ ]powders were ball-milled with an alumina ball for 0-72 hours. $In_2O_3$ doped $WO_3$ was prepared by soaking ball-milled $WO_3$ in an $InCl_3$ solution. The mixed powder was annealed at $700^{\circ}C$ for 30 min in an air atmosphere. A paste for screen-printing the thick film was prepared by mixing the $WO_3$:In2O3 powders with ${\alpha}$-terpinol and glycerol. $In_2O_3$ doped $WO_3$ thick films were fabricated into a gas sensor by a screen-printing method on alumina substrates. The structural properties of the $WO_3$:$InO_3$ thick films were a monoclinic phase with a (002) dominant orientation. The particle size of the $WO_3$:$InO_3$ decreased with the ball-milling time. The sensing characteristics of the $In_2O_3$ doped $WO_3$ were investigated by measuring the electrical resistance of each sensor in the test-box. The highest sensitivity to 5 ppm $CH_4$ gas and 5 ppm $CH_3CH_2CH_3$ gas was observed in the ball-milled $WO_3$:$InO_3$ gas sensors at 48 hours. The response time of $WO_3$:$In_2O_3$ gas sensors was 7 seconds and recovery time was 9 seconds for the methane gas.

Characteristics of a Metal-loaded SnO2/WO3 Thick Film Gas Sensor for Detecting Acetaldehyde Gas

  • Jun, Jae-Mok;Park, Young-Ho;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1865-1872
    • /
    • 2011
  • This study investigates the sensitivity of a gas sensor to volatile organic compounds (VOCs) at various operating temperatures and catalysts. Nano-sized powdered $WO_3$ prepared by sol-gel and chemical precipitation methods was mixed with various metal oxides. Next, transition metals (Pt, Ru, Pd, and In) were doped on the surface of the mixture. Metal-$WO_3$ thick films were prepared using the screen-printing method. The physical and chemical properties of the films were studied by SEM/EDS, XRD, and BET techniques. The measured sensitivity to VOCs is defined as the ratio ($R_a/R_g$) of resistance ($R_{air}$) of $WO_3$ film in the air to resistance ($R_{gas}$) of $WO_3$ film in a VOCs test gas. The sensitivity and selectivity of the films were tested with various VOCs such as acetaldehyde, formaldehyde, methyl alcohol, and BTEX. The thick $WO_3$ film containing 1 wt % of Ru and 5 wt % of $SnO_2$ showed the best sensitivity and selectivity to acetaldehyde gas at an operating temperature of 300 $^{\circ}C$.

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF