• Title/Summary/Keyword: $U_3$Si/Ai fuel

Search Result 2, Processing Time 0.016 seconds

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

Burnup Measurement of Spent $U_3$Si/Al Fuel by Chemical Method Using Neodymium Isotope Monitors

  • Kim, Jung-Suk;Jeon, Young-Shin;Park, Kwang-Soon;Song, Byung-Chul;Han, Sun-Ho;Kim, Won-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.375-385
    • /
    • 2001
  • The total burnup in the spent U$_3$Si/Al fuel samples from Hanaro reactor was determined by destructive methods using $^{148}$ Nd, the sum of $^{143}$ Nd and $^{144}$ Nd, the sum of $^{145}$ Nd and $^{146}$ Nd, and the sum of total Nd isotopes($^{143}$ Nd, $^{144}$ Nd, $^{145}$ Nd, $^{146}$ Nd, $^{148}$ Nd and $^{150}$ Nd) monitors. The fractional($^{235}$ U) turnup in the spent fuel samples was also determined by U and Pu mass spectrometric method. The samples were dissolved in a mixture of 4 M HCI and 10 M HNO$_3$ without any catalyst. The separation of U, Pu and Nd from the spiked and unspiked sample solutions was achieved by two sequential anion exchange separation methods. The isotope compositions of these elements, after their separation from the fuel samples were measured by mass spectrometry. The contents of the elements in the spent fuel samples were determined by isotope dilution mass spectrometric method(IDMS) using $^{233}$ U, $^{242}$ Pu and $^{150}$ Nd as spikes. The effective fission yield was calculated from the weighted fission yields averaged over the irradiation period. The difference between total turnup values determined by various Nd monitors were in the range of 1.8%.

  • PDF