Burnup Measurement of Spent $U_3$Si/Al Fuel by Chemical Method Using Neodymium Isotope Monitors

  • 발행 : 2001.08.01

초록

The total burnup in the spent U$_3$Si/Al fuel samples from Hanaro reactor was determined by destructive methods using $^{148}$ Nd, the sum of $^{143}$ Nd and $^{144}$ Nd, the sum of $^{145}$ Nd and $^{146}$ Nd, and the sum of total Nd isotopes($^{143}$ Nd, $^{144}$ Nd, $^{145}$ Nd, $^{146}$ Nd, $^{148}$ Nd and $^{150}$ Nd) monitors. The fractional($^{235}$ U) turnup in the spent fuel samples was also determined by U and Pu mass spectrometric method. The samples were dissolved in a mixture of 4 M HCI and 10 M HNO$_3$ without any catalyst. The separation of U, Pu and Nd from the spiked and unspiked sample solutions was achieved by two sequential anion exchange separation methods. The isotope compositions of these elements, after their separation from the fuel samples were measured by mass spectrometry. The contents of the elements in the spent fuel samples were determined by isotope dilution mass spectrometric method(IDMS) using $^{233}$ U, $^{242}$ Pu and $^{150}$ Nd as spikes. The effective fission yield was calculated from the weighted fission yields averaged over the irradiation period. The difference between total turnup values determined by various Nd monitors were in the range of 1.8%.

키워드

참고문헌

  1. American Society for Testing and Materials Standard Method E 321-96, 1 (1996)
  2. American Society for Testing and Materials Standard Method E 321-69, 1045 (1969)
  3. W. J. Maeck, Review Paper No.5, IAEA Fission Product Nuclear Data Conference, IAEA-169, Bologna, Italy, Nov.(1973)
  4. H. Kim, H. R. Kim, K. H. Lee and J. B. Lee, J. Nucl. Sci. Tech, 33(7), 527 (1996)
  5. W. Smulek and M. Borkowski, J. Radioanal. Chem., 31, 31 (1974) https://doi.org/10.1007/BF02516468
  6. W. C. Perkins, USAEC Report DP-1337, Savannah River Laboratory (1973)
  7. R. M. Cassidy, S. Elchuk, L. W. Green, C. H. Knight, F. C. Miller and B. M. Recoskie, J. Radioanal. Nucl. Chem. Art., 139(1), 55 (1990) https://doi.org/10.1007/BF02060452
  8. M. V. Nikonov, S. E. Panfilova , V. P. Shilov and I. B. Shirokova, Radiokhimiya, 40(3), 224 (1998)
  9. J. S. Kim, K. S. Choi, Y. S. Jeon, Y. S. Park, D. Y. Kim. S. H. Han and J. Y. Jee, Proceedings of the Korean Nuclear Society Autumn Meeting Seoul, Korea, Oct. (1999)
  10. K. S. Choi, J. S. Kim, S. H. Han, S. D. Park, Y. J. Park, K. S. Joe and W. H. Kim, Anal. Sci. Tech., 13(5), 584 (2000)
  11. S. G. Ro, J. M. Park, D. K. Min, P. I. Choi and H. S. Shin, KAERI/PIED/note-001/87 (1987)
  12. L. Koch, IAEA STI/PUB/337, Analytical Chemistry of Nuclear Fuels, 111 (1972)
  13. American Society for Testing and Materials Standard Method E 244-80 (Reapproved 1995), 1 (1996)
  14. J. E. Rein and C. F. Metz, IAEA STI/PUB/337, Analytical Chemistry in Nuclear Fuel Reprocessing, 111 (1972)
  15. P. De Regge and R. Boden, J. Radioanal. Chem., 35, 173 (1977) https://doi.org/10.1007/BF02518224
  16. J. S. Kim, J. Korean Nucl. Soc., 29(4), 327 (1997)
  17. J. E. Rein, IAEA-SM-149/40, Analytical Methods in the Nuclear Fuel Cycle, 449 (1972)
  18. W. H. Walker, Atomic Energy of Canada Limited Report AECL-3037, Part 1 and 2; Chalk River Nuclear Laboratory (1972)
  19. W. J. Maeck, W. A. Emel, L. L. Dickerson, J. E. Delmore, J. H. Keller, F. A. Duce and R. L. Tromp, Idaho Chemical Programs Report ICP-1092, daho National Engineering Laboratory (1976)
  20. T. R. England and B. F. Rider, ENDF-349. Los Alamos National Laboratory Report LAUR-94-3106, Los Alamos National Laboratory (1994)
  21. D. R. Lide, CRC Handbook of Chemistry and Physics, 74th ed., 11-35, CRC Press. Inc., U.S.A. (1993)