• Title/Summary/Keyword: $UV/TiO_2$ process

Search Result 197, Processing Time 0.026 seconds

Low Temperature Synthesis of TiO2 Films for Application to Dye-sensitized Solar Cells

  • Wi, Jin-Seong;Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.475-475
    • /
    • 2014
  • Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline $TiO_2$ thin film at low temperature. We confirmed the prepared $TiO_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

Core-shell TiO2/Ag Nanoparticle Synthesis and Characterization for Conductive Paste (전도성 페이스트용 코어-쉘 TiO2/Ag 나노입자의 합성 및 특성 연구)

  • Sang-Bo, Sim;Jong-Dae, Han
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Core-shell TiO2/Ag nanoparticles were synthesized by a modified sol-gel process and the reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane. The structure, shape, and size of the TiO2/Ag nanoparticles were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA). The size of TiO2/Ag nanoparticles could be controlled by changing the [water]/[DDBA] molar ratio values. The size and the polydispersity of TiO2/Ag nanoparticles increased when the [water]/[DDBA] molar ratio rose. The resultant Ag nanoparticles over the anatase crystal TiO2 nanoparticles exhibited a strong surface plasmon resonance (SPR) peak at about 430 nm. The SPR peak shifted to the red side with the increase in nanoparticle size. Conductive pastes with 70 wt% TiO2/Ag nanoparticles were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste films of the TiO2/Ag nanoparticles demonstrated greater surface resistance than conventional Ag paste in the range of 405~630 μΩ/sq.

Fabrication of superhydrophobic $TiO_2$ thin films by wet process (습식 공정법에 의한 초발수 $TiO_2$ 박막 제조)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun;Cheong, Deock-Soo;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.262-267
    • /
    • 2009
  • Superhydrophobic $TiO_2$ thin films were successfully fabricated on a glass substrate by wet process. Layer-by-layer (LBL) deposition and liquid phase deposition (LPD) methods were used to fabricate the thin films of micro-nano complex structure with a high roughness. To fabricate superhydrophobic $TiO_2$ thin films, the (PAH/PAA) thin films were assembled on a glass substrate by LBL method and then $TiO_2$ nanoparticles were deposited on the surface of (PAH/PAA) thin film by LPD method, Subsequently, hydrophobic treatment using fluoroalkyltrimethoxysilane (FAS) was carried out on the surface of prepared $TiO_2$ thin films. The $TiO_2$ thin film fabricated with 45 minutes immersion time on $(PAH/PAA)_{10}$ showed the RMS roughness of 65.6nm, water contact angel of $155^{\circ}$ and high transmittance of above 80% (>650nm in wavelength) after the hydrophobic treatment. The Surface morphologies, optical properties and contact angel of prepared thin films with different experimental conditions were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Development for UV/TiO2 Photocatalytic Oxidation Indoor Air Compound Process (광촉매/광산화를 이용한 VOCs 처리장치 개발)

  • Jeon, Bo-Kyung;Choi, Kum-Chan;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.855-864
    • /
    • 2006
  • This study introduces a method to eliminate formaldehyde and benzene, toluene from indoor air by means of a photocatalytic oxidation reaction. In the method introduced, for the good performance of the reaction, the effect and interactions of the $TiO_2$ catalyst and ultraviolet in photocatalytic degradation on the reaction area, dosages of catalysts, humidity and light should be precisely examined and controled. Experiments has been carried out under various intensities of UV light and initial concentrations of formaldehyde, benzene and toluene to investigate the removal efficiency of the pollutants. Reactors in the experiments consist of an annular type Pyrex glass flow reactor and an 11W germicidal lamp. Results of the experiments showed reduction of formaldehyde, benzene and toluene in ultraviolet $/TiO_2/$ activated carbon processes (photooxidation-photocatalytic oxidation-adsorption processes), from 98% to 90%, from 98% to 93% and from 99% to 97% respectively. Form the results we can get a conclusion that a ultraviolet/Tio2/activated carbon system used in the method introduced is a powerful one for th treatment of formaldehyde, benzene and toluene of indoor spaces.

Fabrication and Photocatalytic Activity of TiO2 Nanofibers Dispered with Silica Nanoparticles (SiO2 나노입자가 분산된 TiO2 나노섬유의 제작 및 광촉매 특성 분석)

  • Choi, Kwang-Il;Lee, Woohyoung;Beak, Su-Wung;Song, Jinho;Lee, Sukho;Lim, Cheolhyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.667-671
    • /
    • 2014
  • In this study, we suggest a facile method to control conditions of single component independently when preparing consisting two-component metal oxides nanofiber by simply dispersing nanoparticles in precursor solution. The well dispersed $SiO_2$ nanoparticles in $TiO_2$ nanofibers were successfully synthesized through a simple electrospinning process. The as-synthesized nanodfibers were investigated via FE-SEM, XRD and EDS for structural studies, furthermore, the analysis of UV-VIS and photocatalytic activity were carried out for demonstrate the effect of $SiO_2$ nanoparticles dispersed in $TiO_2$ nanofibers. As a result, $TiO_2$ nanofibres dispersed with $SiO_2$ nanoparticles have enhanced photocatalytic activity than that of $TiO_2$ nanofibres only. In this strategy, the introduction of $SiO_2$ nanoparticles in $TiO_2$ nanofibers were attribute to enlarge absorption in the visible region (380~440 nm). Additionally, $Br{\o}nsted$ acid sites generated in each metal oxide of Ti and Si increase OH radicals efficiently as well as it limit recombination loss by holding photogenerated electrons for high efficient photocatalytic activity.

Oxidation of Organic Compounds Using $TiO_2$ Photocatalytic Membrane Reactors ($TiO_2$ 광촉매 막반응기를 이용한 유기물의 산화)

  • 현상훈;심세진;정연규
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.152-162
    • /
    • 1994
  • The photodegradation efficiency of formic acid on $TiO_2$ photocatalytic membranes was investigated. A new titania membrane reactors for purification of water combining microfiltration with photocatalytic degradation of organic compounds were developed. Titania membrane tubes(average pore size of $0.2\mu m$) were prepared by the slip casting, and porous thin films of $TiO_2$ were formed on the tube surface by the sol-gel process to increase the surface area, and consequently to increase photodegradation efficiency of organic compounds. The UV light with the wavelength of 365 nm was used as a light source for photocatalytic reactions. The photodegradation efficiency of the organic compounds was strongly dependent on the flux of the solution, the microstructure of the membrane (sol pH), and the amount of $O_2$ supplied. The effects of the primary oxidant such as $H_2O_2$ and dopants such as $Nb_2O_5$ on the photodegradation efficiency were also investigated. The results showed that more than 80% of formic acid could be degraded using membrane coated with a $TiO_2$ sol of pH 1.45. The photodegradation efficiency could be improved by about 20% when adding $H_2O_2$ in feed solution or doping $TiO_2$ membranes with $Fe_2O_3$.

  • PDF

Degradation and Ecotoxicity Reduction of Reactive Dye by Using Advanced Oxidation Process (고도산화공정을 이용한 반응성 염료의 제거 및 생태독성 저감)

  • Seo, Kyung Ae;Park, Jae Hong;Jung, Soo Jung;Lim, Byung Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.204-211
    • /
    • 2013
  • In this study, the deriving optimum conditions for decolorization of Acid Orange II solution was carried using $TiO_2$ advanced oxidation process. After that, on base of the deriving results, the range of dye concentration was estimated. In addition, acute toxicity test was also carried to assess toxicity unit according to decolorization and TOC removal. In case of the blockage of light, 20 mg/L of dye solution, and 0.5 g $TiO_2$, the effect of decolorization at pH 3 was larger than at pH 6 and 10, so it was shown that decolorization is dependent on pH. The use of 5 g $TiO_2$ showed best performance of decolorization, but that of 3 g $TiO_2$ was chosen to optimum condition in considering of economical aspects. Four light sources, sun, fluorescent lamp, BLB lamp, and UV-B lamp, were used and decolorization was 99.4% and 100% at 50 mg/L, 98.6% and 99.7% at 100 mg/L for sun and UV-B lamp, respectively. In spite of the optimum condition of decolorization at pH 3, the evaluation of acute toxicity test showed highly toxic. In conclusion, although the optimum treatment of dye solution is performed, water ecology can be polluted in discharging it into water system. Therefore, it is needed to study of water ecological system with dye water treatment, and it takes all the circumstances into consideration.

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

Synthesis of Mesoporous TiO2 and Its Application to Photocatalytic Activation of Methylene Blue and E. coli

  • Kim, Eun-Young;Kim, Dong-Suk;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.193-196
    • /
    • 2009
  • Mesoporous $TiO_2$ material was synthesized from diblock copolymers with ethylene oxide chains via a sol-gel process in aqueous solution. The properties of these materials were characterized with several analytical techniques including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis. The mesoporous $TiO_2$ materials calcined at 400${^{\circ}C}$ were found to have specific surface areas 212 $m^2g^-1$, average pore sizes 6.2 nm, and their average crystal sizes were found to be 8.2 nm. The photocatalytic activity of mesoporous $TiO_2$ was characterized with UV-Vis spectroscopy, and it was found to be 5.8 times higher than that of Degussa P25 $TiO_2$ (P25). For deactivation of Escherichia coli, mesoporous $TiO_2$ also has high photocatalytic inactivity than that of P25. Such a high photocatalytic activity is explained with large surface area and small crystal size with wormhole-like mesoporous structure.

A Study of Molecular Size Distributions of Humic Acid by Photo-Oxidation and Ozonation (부식질의 광산화 및 오존산화에 있어서의 분자량 크기분포 변화 특성에 관한 연구)

  • Kim, Jong-Boo;Kim, Kei-Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.292-298
    • /
    • 2003
  • In this study, the photooxidation and ozonation of humic acid (HA) in aqueous solution were conducted and the treated HA samples at different reaction time were analyzed using ultrafiltration techniques to evaluate the change of their molecular size distributions with its DOC removal. Molecular size distribution of untreated HA showed 41.5% in higher molecular size fractions (>30,000 daltons) and 15.2% in much smaller molecular size fraction (<500 daltons). As UV irradiation time was increased, it was observed that the degradation of the large molecules of the fraction of >30,000 daltons into much smaller molecules was increased. In UV system, the HA molecules of the fraction of <500 daltons became significantly more and its percentage was increased from 35.3% (UV only irradiation) to 58.9% ($UV/TiO_2$) and 87.8% ($UV/H_2O_2$) in the presence of the photocatalysis. Otherwise, ozonation of HA produced mainly the fraction of medium molecular size ranging from 3,000 to 30,000 daltons with much lower portion (<~7%) in the fraction of <500 daltons. In ozone only system, the fraction of 30,000~10,000 daltons occupied in 41.5% at 60 min of ozonation time. In $O_3/H_2O_2$ system, the fraction of 30,000~10,000 daltons and 10,000~3,000 daltons occupied in 38.9% and 36.2% respectively. Based on these results, we suggested applicable treatment process which could be combined with $UV/H_2O_2$, $UV/TiO_2$ and $O_3$, $O_3/H_2O_2$ system for more effective removal of humic acid in water treatment.