• Title/Summary/Keyword: $UO_4$

Search Result 231, Processing Time 0.032 seconds

Surface Reaction of Uranium Dioxide with CF$_4$/O$_2$ Mixture Gas Plasma (CF$_4$/O$_2$ 혼합기체 플라즈마를 이용한 이산화 우라늄의 표면식각반응)

  • 민진영;김용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.165-171
    • /
    • 1999
  • The etching reaction of $UO_2$ in $CF_4/O_2$ gas plasma is examined as functions of $CF_4/O_2$ ratio, plasma power, and substrate temperature at up to $370^{\circ}C$ under the total pressure of 0.30 Torr. It is found that the highest etching rate is obtained at 20% $O_2$ mole fraction, regardless of r. f. power and substrate temperature. The existence of the optimum $CF_4/O_2$ ratio is confirmed by SEM, XPS and XRD analysis. The highest etching reaction rate at $370^{\circ}C$ under 150W exceeds 1000 monolayers/min., which is equivalent to 0.4$\mu\textrm{m}$/min. The mass spectrometry analysis results reveal that the major reaction product is uranium hexa-fluoride $UF_6$. Based on the experimental findings, dominant overall reaction of uranium dioxide in $CF_4/O_2$ plasma is determined : $8UO_2+12CF_4+3O_2=8UF_6+12CO_{2-x}$ where $CO_{2-x}$ represents the undetermined mix of $CO_2$ and CO.

  • PDF

Etching Reaction of $UO_2\;with\;CF_4/O_2$ Mixture Gas Plasma

  • Kim, Yongsoo;Jinyoung Min;Kikwang Bae;Myungseung Yang
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.133-138
    • /
    • 1999
  • Research on the etching reaction of UO$_2$ with CF$_4$/O$_2$gas mixture plasma is carried out. The reaction rates are investigated as a function of CF$_4$/O$_2$ ratio, plasma power, and substrate temperature. It is found that there exists an optimum CF$_4$/O$_2$ ratio around 4:1 at all temperatures up to 37$0^{\circ}C$ and surface analysis using XPS X-ray Photoelectron Spectroscopy) confirms the result. Peak rate at the optimum gas composition increases with increasing temperature. Highest rate obtained in this study leaches 1050 monolayers/min. at 37$0^{\circ}C$ under r. f. power of 150 W, which is equivalent to about 0.5${\mu}{\textrm}{m}$/min. The rate also increases with increasing r. f. power, thus, higher power and higher substrate temperature will undoubtedly raise the etching reaction rate much further. This reaction seems to be an activated process, whose activation energy will be derived in the following experiments.

  • PDF

Polarograms of Uranium(VI) and Rare Earth(III) Metal Complexes with Macrocyclic Ligands in Dimethylsulfoxide Solvent (디메틸술폭시드 용매중에서 거대고리리간드를 포함한 우라늄(VI)과 희토류(III) 금속 착물의 폴라로그램)

  • Hak Jin Jung;Oh Jin Jung;Chilnam Choi
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.233-242
    • /
    • 1988
  • The uranium(VI) complexes with new unsaturated macrocyclic ligands of cryptand types and the neodymium(III) complexes with cryptand 222 and DBC ligands have been investigated polarographically in dimethylsulfoxide solvent. The reduction states, electron numbers involved in the reduction process, effects of the added acid on the polarograms of complexes, and the mechanisms of the reduction electrode reactions have been examined. The stability constants and mole-ratio of new complexes were also obtained by polarographic method. The reaction of ligands was controlled by the diffusion in the reduction with four electrons at a step, whereas the redox reaction with six electrons at three steps in $UO_2\;^{2+}$ complexes with macrocyclic ligands and the redox reaction with one electron at a step in $Nd^{3+}$ complexes with cryptand 222 and DBC have been observed. The imine ligands formed stable complexes with uranium(VI) above pH 7.0, and the neodymium(III) complexes with cryptand 222 and DBC ligands were stable above pH 4.0.

  • PDF

Analysis of the CREOLE experiment on the reactivity temperature coefficient of the UO2 light water moderated lattices using Monte Carlo transport calculations and ENDF/B-VII.1 nuclear data library

  • El Ouahdani, S.;Erradi, L.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Boulaich, Y.;Ahmed, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1120-1130
    • /
    • 2020
  • The CREOLE experiment performed In the EOLE critical facility located In the Nuclear Center of CADARACHE - CEA have allowed us to get interesting and complete experimental information on the temperature effects in the light water reactor lattices. To analyze these experiments with accuracy an elaborate calculation scheme using the Monte Carlo method implemented in the MCNP6.1 code and the ENDF/B-VII.1 cross section library has been developed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original library. The main purpose of this analysis is the qualification of the ENDF/B-VII.1 nuclear data for the prediction of the Reactivity Temperature Coefficient while ensuring the ability of the MCNP6.1 system to model such a complex experiment as CREOLE. We have analyzed the case of UO2 lattice with 1166 ppm of boron in ordinary water moderator in specified temperatures. A detailed comparison of the calculated effective multiplication factors with the reference ones [1] in room temperature presented in this work shows a good agreement demonstrating the validation of our 3D calculation model. The discrepancies between calculations and the differential measurements of the Reactivity Temperature Coefficient for the analyzed configuration are relatively small: the maximum discrepancy doesn't exceed 1,1 pcm/℃. In addition to the analysis of direct differential measurements of the reactivity temperature coefficient performed in the poisoned UO2 lattice configuration, we have also analyzed integral measurements in UO2 clean lattice configuration using equivalency of the integral temperature reactivity worth with the driver core fuel reactivity worth and soluble boron reactivity worth. In this case both of the ENDF/B-VII.1 and JENDL.4 libraries were used in our analysis and the obtained results are very similar.

Synthesis of SAPP-g-(AN/St) Fibrous Ion-Exchanger by E-beam Pre-irradiation and Their Adsorption Properties for Uranium Ion (E-beam 전조사법에 의한 SAPP-g-(AN/St) 섬유상 이온교환체의 합성 및 우라늄 흡착특성)

  • Hwang, Taek-Sung;Park, Jin-Won;Kim, Kwang-Young
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • The bi-functional ion exchangers, SAPP-g-(AN/St) were synthesized with mixed vinyl monomers(acrylonitrile and styrene) onto PP fabric by the pre-irradiation grafting with E-beam and its subsequent amidoximination and sulfonation. The degree of grafting of PP-g-(AN/St) was increased with decreasing acrylonitrile composition in the mixed monomers. The water uptake of copolymers increased with decreasing in the amidoxime ratio in the copolymers and increased by sulfonation, but decreased by amidoximation. The $UO_2^{2+}$ adsorption capacity of SPP-g-St, APP-g-AN, and SAPP-g-(AN/St) were 12.4, 34.0, and 38.0 mg/g, respectively and the optimum adsorption time is about 50 hrs. As a result of uranium adsorption, the synthesized ion exchanger, which we obtained have also good affinity toward the adsorption or chelating with $UO_2^{2+}$ ions.

  • PDF

Use of americium as a burnable absorber for VVER-1200 reactor

  • Shelley, Afroza;Ovi, Mahmud Hasan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2454-2463
    • /
    • 2021
  • The objective of this research is to the use of americium (AmO2) as a burnable absorber effectively instead of conventional gadolinium (Gd2O3) for VVER-1200 reactor by analyzing its impacts on reactivity, power peaking factor (PPF), safety factor, and quality of the spent fuel. The assembly is burned to 60 GWd/t by using SRAC-2006 code and JENDL-4.0 data library for finding the optimum amount and effective way of using AmO2 as a burnable absorber. From these studies, it is found that AmO2 can decrease the excess reactivity like Gd2O3 without changing the criticality life span and enrichment of 235U. A homogeneous mixture of the 0.20% AmO2+ 4.95% enriched UO2 fuel rod (model MF-4) decreases the PPF than the reference assembly. The use of AmO2+UO2 in the integral burnable absorber (IBA) rod or the outer layer could also decrease the PPF up to 10 GWd/t but increases rapidly after 30 GWd/t, which could be a safety threat. The fuel temperature coefficient and void coefficient of the model MF-4 are the same as the reference assembly. In addition, 22% of initially loaded Am are burning effectively and contributing to the power production.

Sulfurization of Rare-Earth Oxides Using $H_2S$ and $SC_2$

  • Sato, Nobuaki;Sato, Soichi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.60-63
    • /
    • 2004
  • Sulfurization of rare-earth oxides R203 (R=Nd, Eu) using sulfurizing reagents, such as $H_2S$ and $SC_2$was examined for the sulfide magnetic separation of spent fuel. $EU_2O_3$was found to react with H$_3$S gas forming the mixture of $EU_2O_2S$ and EuS at 500 oC, while EuS was formed by $SC_2$ at 800 oC. In the case of the mixture of $R_2O_3$and $UO_2$, EuS and $ND_3S_4$ were formed as well as $EU_2O_2S$ and $Nd_2O_2S$ at 500oC in $H_2S$, though $UO_2$ remained unreacted.

  • PDF

Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide

  • Alzamly, Mohamed A.;Aziz, Moustafa;Badawi, Alya A.;Gabal, Hanaa Abou;Gadallah, Abdel Rraouf A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.674-680
    • /
    • 2020
  • We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core fueled with mixed (Th+Pu)O2, achieved about 24% higher fuel cycle length than the UO2 case. It also enhanced safeguard security by burning Pu isotopes. The results were compared with previously published papers and good agreements were found.

Adsorption of Metal Ions on Cryptand Synthetic Resin (Cryptand 합성수지에 위한 금속 이온들의 흡착)

  • Lee Chi-Young;Kim Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.38-44
    • /
    • 2005
  • Cryptand resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of $1\%,\;2\%,\;5\%\;and\;10\%$ by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium$(UO_2^{2+})$ ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO_2^{2+})$ > zinc$(Zn^{2+})$ > samarium$(Sm^{3+})$ ion. The adsorption was in order of $1\%>2\%>5\%>10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.