• Title/Summary/Keyword: $UO_2$ fuel

Search Result 239, Processing Time 0.026 seconds

Design Optimization of Duplex Burnable Poison Rods and Feasibility Evaluation for Core Design (이중구조 가연성독봉 설계안의 최적화 및 노심 핵설계 타당성 평가)

  • Yoon Seok-Kyun;Lee Dae-Jin;Kim Myung-Hyun
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-258
    • /
    • 2004
  • The duplex burnable poison absorbers concept was suggested by Korea Atomic Energy Research Institute. This BP rod is composed of inner region of natural U-Gd$_2$O$_3$ and outer shell of enriched UO$_2$-Er$_2$O$_3$. It is expected that this burnable absorber has same reactivity control capability with gadolinia burnable absorber used in extened fuel cycle. In order to evaluate the nuclear feasibility of duplex BPs, the nuclear design characteristics were compared with that of four types of burnable absorbers; gadolinia, erbia, IFBA, dysprosia duplex BP on 24 months fuel cycle for Korean Standard Nuclear Power plants. According to the evaluation results of nuclear characteristics, the duplex BPs were better than other BPs on k-infinitives, reactivity holddown worth (RHW), pin power peaking and moderator temperature coefficient (MTC). The possibility of nuclear core design was also confirmed based on the optimized fuel assemblies which were searched for a sensitivity analysis. Characteristics of core design with duplex BPs was compared with that of reference core with gadolinia BPs for cycle length, power peaking and MTC. The duplex BP core had a little longer cycle length by 4 to 7 days because of increased amount of fissile in enriched uranium at the outer shell of duplex BP In case of power peaking F$\_$Q/ of duplex BP core was reduced from 1.5773 to 1.5335. MTC was also less -0.48 pcm/C than that of reference core. Finally, evaluation of fuel cycle economy was performed for the manufacturing feasibility test and fuel cost evaluation with duplex BPs. Fuel cycle economy of duplex BP core almost was equivalent with that of gadolinia BP core.

Process Analysis on the Decontamination of Internal Surface of $UF_6$ Cylinder ($UF_6$ 실린더 내부표면 제염에 관한 공정분석)

  • Chun, Kwan-Sik;Yoo, Sung-Hyun;Cho, Young-June;Hong, Jang-Pyo;Han, Wook-Jin;Choi, Beong-Soon;Kang, Pil-Sang;Cho, Suk-Ju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2009
  • To evaluate the efficiency of the decontamination plant for the removal of uranium compounds deposited on the internal surface of $UF_6$ cylinder for its reuse, two demonstration tests of the plant with different ratio of ${Na_2}{CO_3}$ and ${H_2}{O_2}$ were carried out, and each test had 5 steps. The main chemical form removed by the tests was to be identified as ${Na_4}{UO_2}(CO_3)_3$. More than 50% of uranium was removed by water of the first step, and at the following steps the removal amounts were exponentially decreased. On the other hand, the result shows that the injected amount of ${Na_2}{CO_3}$, compared with that of the removed uranium, was stoichiometrically excessed. This suggests that the injected amounts of ${Na_2}{CO_3}$, the generation rate of decontaminated waste, and the decontamination steps could be reduced by a process optimization of the plant.

  • PDF

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

An Evaluation of Nuclear Design Characteristics of Duplex Burnable Absorber Rods (이중구조 가연성 독봉의 핵설계 특성 평가)

  • 이대진;김명현;송근우;정연호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.71-79
    • /
    • 2002
  • Nuclear design characteristics of duplex burnable poison rod were evaluated based on 24 month cycle fuel for Korean Standard Nuclear Plant. A fuel assembly with duplex burnable poison rod was designed for an equivalent assembly to 16 gadolinia BPs. Duplex BP is composed of inner region of natural U-12wt%Gd$_2$O$_3$ and outer shell of 4.95wt%UO$_2$-2wt%Er$_2$O$_3$. In order to compare this duplex option, assemblies with 140 erbia pins were designed as an alternative option. The variation of k-infinitive, rod worth, pin peaking and MTC were compared. Duplex BP had the better neutronic performance than gadolinia BP in all parameters. However, Duplex BP was worse than erbia BP in the aspect of safety.

  • PDF

Identification of Uranium Species Released from the Waste Glass in Contact with Bentonite

  • Kim Seung-Soo;Chun Kwan-Sik;Kang Chul-Hyung;Han Phil-Su;Choi Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Yellowish uranium compounds were enriched at the interface between a Ca-bentonite block and a waste glass, containing about $20\%$ uranium oxide, in contact with the block due to the dissolution of uranium by a synthetic granitic groundwater in Ar atmosphere. The uranium compound formed for 6 years leach time was identified as a beta-uranophane $[Ca(UO_2)_2(SiO_{3}OH)_{2}5H_{2}O]$ using XRD, IR and mass spectrometer. The solubility of the beta-uranophane was measured to be about $10^{-6}\;mole/L$ in de-mineralized water at $80^{\circ}C$.

  • PDF

Parameters Effect on Fabrication of Nuclear Fuel by Plasma Deposition (플라즈마 침적에 의한 핵열료 제조에 미치는 변수들의 영향)

  • Jeong, In-Ha;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.783-790
    • /
    • 1998
  • New process development of nuclear fuel fabrication for nuclear power plant was attempted by induction plasma technology with yttria-stabilized-zirconia ($\textrm{ZrO}_{2}$-$\textrm{Y}_{2}\textrm{O}_{3}$)powder, similar to $\textrm{UO}_{2}$, in the respect of melting point and physicochemical characteristics. Extent of powder melting was affected greatly by plasma plate power and particle size. Being optimized such as, sheath gas composition, probe position, particle size and spraying distance, dense deposit of 97.91% T.D. with deposition rate 20mm/min was attained at the condition of 120/20$\ell$/min of Ar/$\textrm{H}_{2}$ flow rate, 80kw of plate power, 8cm of probe position, 200Torr of chamber pressure and 18cm of spraying distance. The pellet of 96.5% of theoretical density was formed with homogeneity and nice exterior view at the best condition of deposition experiments, and the possibility of new nuclear pellet fabrication process was confirmed. The main and interrelated effects on deposit density were assessed by ANOVA(Ana1ysis of Variance).

  • PDF

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

Analysis of Fission Products on Irradiated Fuels using EPMA (EPMA를 이용한 사용후핵연료의 연소도 측정에 관한 연구)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Oh, Wan-Ho;Lee, Hong-Gy;Choo, Yong-Sun;Hong, Kwon-Pyo
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The Methodology of burnup calculation with EPMA test set up in this study. The spent fuel from PWR nuclear power plant was used as specimen. This $UO_2$ fuel with 3.2% of enrichment had been irradiated up to 35,000 MWd/MTU. The burnup is very important factor for nuclear fuel to estimate all fuel behaviors in reactor. To measure amounts of fission products and actinides for the burnup calcualation, destructive method analysis has been used but it makes long experimental time and second radio-wastes. In this study, EPMA test was available to measure amount of fission products. Neodymium is able to be detected and quantified. It can be compared with the results from chemical analysis and ORIGEN-2 code calculation. Concentration of Nd from EPMA test showed good agreement with result of ORIGEN-2 code in the same burnup.

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

Atomistic simulations of nanocrystalline U0.5Th0.5O2 solid solution under uniaxial tension

  • Xiao, Hongxing;Wang, Xiaomin;Long, Chongsheng;Tian, Xiaofeng;Wang, Hui
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1733-1739
    • /
    • 2017
  • Molecular dynamics simulations were performed to investigate the uniaxial tensile properties of nanocrystalline $U_{0.5}Th_{0.5}O_2$ solid solution with the Born-Mayer-Huggins potential. The results indicated that the elastic modulus increased linearly with the density relative to a single crystal, but decreased with increasing temperature. The simulated nanocrystalline $U_{0.5}Th_{0.5}O_2$ exhibited a breakdown in the Halle-Petch relation with mean grain size varying from 3.0 nm to 18.0 nm. Moreover, the elastic modulus of $U_{1-y}Th_yO_2$ solid solutions with different content of thorium at 300 K was also studied and the results accorded well with the experimental data available in the literature. In addition, the fracture mode of nanocrystalline $U_{0.5}Th_{0.5}O_2$ was inclined to be ductile because the fracture behavior was preceded by some moderate amount of plastic deformation, which is different from what has been seen earlier in simulations of pure $UO_2$.