• Title/Summary/Keyword: $TiO_2$-complex

Search Result 173, Processing Time 0.025 seconds

The Effects of TiO$_2$Addition on the PTC Properties of BaTiO$_3$ (BaTiO$_3$계의 PTC 특성에 미치는 TiO$_2$첨가량의 영향)

  • 김병수;박준식;박광범;손명성;김털수;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.44-48
    • /
    • 1996
  • We have investigated the influence of Ti/Ba mole ratio in the characteristics of the modified BaTiO$_3$systems with Ca addition. The specimens were fabricated with variations in Ti/Ba mole ratio between 0.995 and 1.01, and sintered in the temperature range between 13$25^{\circ}C$ and 1375$^{\circ}C$. The room temperature resistivity, PTCR effect and ac complex impedence characteristics were studied. It shows that the room temperature resistivity was increased with the increasing Ti/Ba mole ratio and sintering temperature. It was suggested that this result was mainly attributed to its grain-boundary properties

  • PDF

A Study on Synthesis and Mechanical Properties of (Ti.W)C Complex Carbide by SHS Chemical Furnace (SHS 화학로에 의한 (Ti.W)C 복탄화물의 합성 및 기계적 특성에 관한 연구)

  • 이형복;오유근;이풍헌;장동환
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.418-424
    • /
    • 1996
  • (Ti.W)C complex carbide was synthesized by self-propagating high temperature synthesis (SHS) chemical furnace. Attempt to find the optimal condition for synthesis of (Ti.W)C the effects of molar ratio of Ti:W:C on the synthesized powders and mechanical properties were investigated, Optimum molar ratio of these synthe-sized powder was Ti:W:C=0.7:0.2:1.0 The bulk density M,O.R Hardness Fracture toughness of (Ti.W)C complex carbide sintered at 200$0^{\circ}C$ for 60 min by hot-pressing under the pressure of 20 MPa were 7.6g/cm3, 475 MPa, 17,.7 GPa respectively.

  • PDF

Effect of Salicylic and Picolinic Acids Acids on the Adsorption of U(VI) onto Oxides (산화물 표면의 U(VI) 흡착에 미치는 살리실산과 피콜린산의 영향)

  • Park, Kyoung-Kyun;Jung, Euo-Chang;Cho, Hye-Ryun;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.219-227
    • /
    • 2009
  • The effect of organic acids on the adsorption of U(VI) onto oxide surfaces ($TiO_2)$(anatase), $SiO_2$(amorphous) and $Al_2O_3$(amorphous)) has been investigated. Two different organic acids, salicylic and picolinic acids, were used. Changes of adsorption ratio of U(VI), which depend on the existence of organic acids in a sample, were measured as a function of pH. Quantities of adsorbed organic acids, which depend on the existence of U(VI) in a sample, were also measured as a function of pH. It is confirmed that the soluble complex formation of U(VI) with organic acids can deteriorate the adsorption of U(VI) onto $TiO_2$ surface. It is noteworthy that salicylic acid does not affect the adsorption of U(VI) onto $SiO_2$ surface, however, picolinic acid enhances the adsorption of U(VI) onto $SiO_2$ surface. The latter effect can be understood by considering the formation of a ternary surface complex on $SiO_2$ surface, which was confirmed by the co-adsorption of picolinic acid with U(VI) and the change in a fluorescence spectra of U(VI) on surface, In the case of $Al_2O_3$, organic acids themselves were largely adsorbed onto a surface without deteriorating the adsorption of U(VI). This would support the possibility of a ternary surface complex formation on the $Al_2O_3$ surface, and an additional spectroscopic study is required.

  • PDF

A Study on the Photon Energy Characteristics of Photocatalytic $TiO_2$ Ferroelectrics Thin Film According to Coating Thickness (광촉매용 $TiO_2$ 강유전체 박막의 증착 두께에 따른 Photon Energy 특성에 관한 연구)

  • 김병인;전인주;이상일
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.329-334
    • /
    • 2002
  • This study evaporates TiO$_2$ layer thickness differently with RF sputtering method on Si Wafer(n-100). Thin film is made with the structure of Si+TiO$_2$ and Si+TiO$_2$+Al by evaporating TiN which is used as Antireflection of superintegrated semiconductor integrated circuit with Photo Catalyst. The research is performed to increase the characteristics of photon energy according to TiO$_2$ thickness and the reliability and reproducibility of TiO$_2$ thin film. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant ($\varepsilon$$_1$, $\varepsilon$$_2$) has larger peak values as it's thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Microstructure Observation of Complex Perovskite (1-x) $(Li_{1/2}Sm_{1/2})TiO_3-x (Na_{1/2}Sm_{1/2})TiO_3$ (LNST) System [2] (복합 페로브스카이트 (1-x) $(Li_{1/2}Sm_{1/2})TiO_3-x (Na_{1/2}Sm_{1/2})TiO_3$ (LNST) system의 미세구조 관찰 [2])

  • Son, JJin-Ok;Nahm, Sahn;Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 2004
  • Microstructural characteristics of the Complex Perovskite (1-x) $(Li_{1/2}Sm_{1/2})TiO_3-x (Na_{1/2}Sm_{1/2})TiO_3$ (LNST) system have been investigated using the transmission electron microscopy (TEM). When $0.0{\leq}x{\leq}0.6$, the vacancy ordering forming the 1/2 (001) superlattice reflections due to the A-site cation deficiencies has apperaed. It could be confirmed by presence of ABPs. But it was difficult to form the vacancy ordering since vacancy concentration gradually lowered as the amount of the substituted Li ions decrease. Antiphase boundaries (APBs) were presented in microstructures of LNST when $0.8{\leq}x{\leq}1.0$. It was considered that these boundaries were caused by the 1:1 chemical ordering of A-site cations, Na and Sm ions. LNST had not only the antiphase tilting of oxygen octahedron but also the inphase tilting of oxygen octahedron and the antiparallel shift of cations all of them. It could be confirmed by presence of ferroelastic domains

Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System

  • Borse, Pramod H.;Yoon, Sang-Su;Jang, Jum-Suk;Lee, Jae-Sung;Hong, Tae-Eun;Jeong, Euh-Duck;Won, Mi-Sook;Jung, Ok-Sang;Shim, Yoon-Bo;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3011-3015
    • /
    • 2009
  • Structural and thermo-analytical studies were carried out to understand the phase formation kinetics of the single phase $Bi_5Ti_3FeO_{15}$ (BTFO) nanocrystals in $Bi_2O_3-Fe_2O_3-TiO_2$, during the polymerized complex (PC) synthesis method. The crystallization of Aurivillius phase $Bi_5Ti_3FeO_{15}$ layered perovskite was found to be initiated and achieved under the temperature conditions in the range of ${\sim}$800 to 1050$^{\circ}C$. The activation energy for grain growth of $Bi_5Ti_3FeO_{15}$ nanocrystals (NCs) was very low in case of NCs formed by PC (2.61 kJ/mol) than that formed by the solid state reaction (SSR) method (10.9 kJ/mol). The energy involved in the phase transformation of Aurivillius phase $Bi_5Ti_3FeO_{15}$ from $Bi_2O_3-Fe_2O_3-TiO_2$ system was ${\sim}$ 69.8 kJ/mol. The formation kinetics study of $Bi_5Ti_3FeO_{15}$ synthesized by SSR and PC methods would not only render a large impact in the nanocrystalline material development but also in achieving highly efficient visible photocatalysts.

Pyroelectricity of BaTiO3-doped PMNT ferroelectric system for pyroelectric sensor

  • Yeon Jung Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.380-385
    • /
    • 2023
  • In this study, an MPB PMNT system containing 0.05 to 0.10 wt.% BaTiO3 was synthesized using a traditional chemical method and its pyroelectricity was investigated. Pyroelectricity, dielectricity, and ferroelectricity of the synthesized BaTiO3-PMNT system were analyzed by heat treatment at 1240~1280 ℃ for 4 hours to evaluate its applicability as a pyroelectric sensor. Unlike the simple ABO3 ferroelectric, the BaTiO3-doped PMNT system exhibited phase transition characteristics over a wide temperature range typical of complex perovskite structures. Although no dramatic change could be confirmed depending on the amount of BaTiO3 added, stable pyroelectricity was maintained near room temperature and over a wide temperature range. When the amount of BaTiO3 added increased from 0.05BaTiO3-PMNT to 0.10BaTiO3-PMNT, the electric field slightly increased from 5.00×103 kV/m to 6.75×103 kV/m, and the maximum value of remanent polarization slightly increased from 0.223 C/m2 to 0.234 C/m2. The pyroelectric coefficients of 0.05BaTiO3-PMNT and 0.10BaTiO3- PMNT at room temperature were measured to be ~0.0084 C/m2K and ~0.0043 C/m2K, respectively. The relaxor ferroelectric properties of the BaTiO3-PMNT system were confirmed by analyzing the plot of Kmax/K versus (T-Tmax)γ. The BaTiO3-doped MPB PMNT system showed a distinct pyroelectric performance index at room temperature, and the values were Fv ~ 0.0362 m2/C, Fd ~ 0.575×10-4 Pa-1/2.

A Study on Development of EM Wave Absorber Using TiO2 for Automotive Radar in Cars

  • Choi, Chang-Mook;Kim, Dong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.110-113
    • /
    • 2008
  • In this paper, we designed and fabricated an electromagnetic(EM) wave absorber for automotive radar in cars using $TiO_2$ as a dielectric material and chlorinated polyethylene(CPE) as a binder. First of all, we confirmed that the optimum composition ratio of $TiO_2$ was about 70 wt.%. The complex relative permittivity of a sample containing $TiO_2$: CPE=70:30 wt.% was calculated from S-parameter. The EM wave absorption abilities were simulated for the EM wave absorbers of different thickness using the calculated relative permittivity, and the EM wave absorber was manufactured based on the simulated design. A comparison of simulated and measured results is in good agreement. Measurement shows that a 1.85 mm thick absorber has absorption ability higher than 20 dB in the frequency range of $76{\sim}77$ GHz for automotive radars.

Experimental Verification of the Decomposition of Y2O3 in Fe-Based ODS Alloys During Mechanical Alloying Process

  • Byun, Jong Min;Park, Chun Woong;Kim, Young Do
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1309-1314
    • /
    • 2018
  • In this study, we investigated the state of $Y_2O_3$, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced $Ti_2O_3$ that formed different reaction products depending on the state of $Y_2O_3$ into the Fe-based ODS alloys. In addition, the reaction products of $Ti_2O_3$, Y, and $Y_2O_3$ powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that $YTiO_3$ and $Y_2Ti_2O_7$ were formed when $Ti_2O_3$ reacted with Y; in contrast, only $Y_2Ti_2O_7$ was detected during the reaction between $Ti_2O_3$ and $Y_2O_3$. In the alloy of $Fe-Cr-Y_2O_3$ with $Ti_2O_3$, $YTiO_3$ (formed by the reaction of $Ti_2O_3$ with Y) was detected after the MA and heat treatment processes were complete, even though $Y_2O_3$ was present in the system. Using these results, it was proved that $Y_2O_3$ decomposed into monoatomic Y and O during the MA process.