DOI QR코드

DOI QR Code

Experimental Verification of the Decomposition of Y2O3 in Fe-Based ODS Alloys During Mechanical Alloying Process

  • Byun, Jong Min (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Chun Woong (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young Do (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2018.04.14
  • Accepted : 2018.04.29
  • Published : 2018.11.20

Abstract

In this study, we investigated the state of $Y_2O_3$, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced $Ti_2O_3$ that formed different reaction products depending on the state of $Y_2O_3$ into the Fe-based ODS alloys. In addition, the reaction products of $Ti_2O_3$, Y, and $Y_2O_3$ powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that $YTiO_3$ and $Y_2Ti_2O_7$ were formed when $Ti_2O_3$ reacted with Y; in contrast, only $Y_2Ti_2O_7$ was detected during the reaction between $Ti_2O_3$ and $Y_2O_3$. In the alloy of $Fe-Cr-Y_2O_3$ with $Ti_2O_3$, $YTiO_3$ (formed by the reaction of $Ti_2O_3$ with Y) was detected after the MA and heat treatment processes were complete, even though $Y_2O_3$ was present in the system. Using these results, it was proved that $Y_2O_3$ decomposed into monoatomic Y and O during the MA process.

Keywords

Acknowledgement

Grant : Development of 980°C grade superalloys strengthened by multi-component nano-oxides for commercialization of core materials in the field of the defense industry

Supported by : Ministry of Trade, Industry and Energy, National Research Foundation of Korea (NRF)

References

  1. A. Kimura, R. Kasada, A. Kohyama, H. Tanigawa, T. Hirose, K. Shiba, S. Jitsukawa, S. Ohtsuka, S. Ukai, M.A. Sokolov, R.L. Klueh, J. Nucl. Mater. 367-370, Part A (2007)
  2. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, J. Nucl. Mater. 341, (2005)
  3. M.L. Flem, in Advanced Materials for Fuel Cladding in Sodium Fast Reactors, Presentation to 3rd MATGEN Summer School, Lerici, Italy, 2011
  4. P. Norajitra, R. Giniyatulin, T. Ihli, G. Janeschitz, P. Karditsas, W. Krauss, R. Kruessmann, V. Kuznetsov, D. Maisonnier, I. Mazul, C. Nardi, I. Ovchinnikov, S. Papastergiou, A. Pizzuto, P. Sardain, Nucl. Fusion 45, 11 (2005)
  5. T.R. Allen, J. Gan, J.I. Cole, M.K. Miller, J.T. Busby, S. Shutthanandan, S. Thevuthasan, J. Nucl. Mater. 375, 1 (2008) https://doi.org/10.1016/j.jnucmat.2007.08.020
  6. J.H. Lee, J.H. Kim, J. Kor. Powder Met. Inst. 20, 3 (2013)
  7. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima, J. Nucl. Sci. Technol. 39, 8 (2002) https://doi.org/10.1080/00223131.2002.10875398
  8. M. A. Sokolov, H. Tanigawa, G. R. Odette, K. Shiba, R. L. Klueh, J. Nucl. Mater., 367-370, Part A (2007)
  9. A. Kelly, R.B. Nicholson, Strengthening Methods in Crystals (Wiley, New York, 1972)
  10. M.J. Alinger, Dissertation, University of California, Santa Barbara, 2004
  11. Z. Oksiuta, M. Lewandowska, K.J. Kurzydolwski, Mech. Mater., 67, (2013)
  12. H. Xu, Z. Lu, S. Ukai, N. Oono, C. Liu, J. Alloys Compd., 693, (2017)
  13. G.J. Zhang, Y.J. Sun, R.M. Niu, J. Sun, J.F. Wei, B.H. Zhao, L.X. Yang, Adv. Eng. Mater. 6, 12 (2004)
  14. M. A. Auger, T. Leguey, A. Munoz, M. A. Monge, V. D. Castro, P. Fernandez, G. Garces, R. Pareja, J. Nucl. Mater., 417, (2011)
  15. I.S. Kim, B.Y. Choi, C.Y. Kang, T. Okuda, P.J. Maziasz, K. Miyahara, ISIJ Int. 43, (2003)
  16. M. A. Auger, V. D. Castro, T. Leguey, A. Munoz, R. Pareja, J. Nucle. Mater., 436, (2013)
  17. H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, M. Fujiwara, J. Alloys Compd., 452, (2008)
  18. P. Unifantowicz, T. Plocinski, C. A. Williams, R. Schaublin, N. Blanc, J. Nucl. Mater., 442, (2013)
  19. K. Oka, S. Ohnuki, S. Yamashita, N. Akasaka, S. Ohtsuka, H. Tagigawa, Mater. Trans., 48, (2007)
  20. Q. Tang, T. Hoshino, S. Ukai, B. Leng, S. Hayashi, Y. Wang, Mater. Trans. 51, 11 (2010)
  21. H. Sakasegawa, S. Ohtsuka, S. Ukai, H. Tanigawa, M. Fujiwara, H. Ogiwara, A. Kohyama, J.Nucl. Mater., 367-370, Part A (2007)
  22. M. A. Moghadasi, M. N-Ahmadabadi, F. Forghani, H. S. Kim, Sci. Rep., 6, (2016)
  23. M. J. Alinger, G. R. Odette, D. T. Hoelzer, Acta Mater., 57, (2009)
  24. D.J. Larson, P.J. Maziasz, I.-S. Kim, K. Miyahara, Scr. Mater. 44, 2 (2001)
  25. T. Liu, H. Shen, C. Wang, W. Chou, Prog. Nat. Sci. 23, (2013)
  26. Y. Kimura, S. Takaki, S. Suejima, R. Uemori, H. Tamehiro, ISIJ Int. 39, (1999)
  27. L. Barnard, N. Cunningham, G.R. Odette, I. Szlufarska, D. Morgan, Acta Mater. 91, (2015)
  28. P. He, T. Liu, A. Moslang, R. Lindau, R. Ziegler, J. Hoffmann, P. Kurinskiy, L. Commin, P. Vladimirov, S. Nikitenko, M. Silveir, Mater. Chem. Phys. 136, (2012)

Cited by

  1. 페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향 vol.27, pp.4, 2018, https://doi.org/10.4150/kpmi.2020.27.4.311