• Title/Summary/Keyword: $TiO_2$ thin-film

Search Result 1,093, Processing Time 0.046 seconds

Film Properties of MOCVD TiN prepared by TDMAT and TDMAT/$NH_3$ (TDMAT와 TDMAT/$NH_3$ 로 형성한 MOCVD(Metal Organic Chemical Vapor Deposition) Titanium Nitride 박막의 특성)

  • Baek, Su-Hyeon;Kim, Jang-Su;Park, Sang-Uk;Won, Seok-Jun;Jang, Yeong-Hak;O, Jae-Eung;Lee, Hyeon-Deok;Lee, Sang-In;Choe, Jin-Seok
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.775-780
    • /
    • 1995
  • Thin films of titanium nitride are formed using the tetrakis-dimethyl-amino-titanium (TDMAT(Ti[N($CH_3$)$_2$]$_4$)) under various conditions. The formation of TiN films has been obtained from the thermal decomposition of the Ti-precursor and the gas phase reaction between TDMAT and ammonia(NH$_3$). The resistivity of the MOCVD film can be attributed to their impurity. Especially the curve fitting graph of XPS data is revealed that main impurities in the films as carbon and oxygen make various interstitial compounds which has influenced physical and electrical properties of the film. In the contact hole with the aspect ratio of 3:1 and the diameter of 0.5${\mu}{\textrm}{m}$, the SEM morphology shows that the step coverage is more decreased in the films formed y flowing ammonia additionally than the films formed by pyrolysis of TDMAT and the phenomenon is probably related with the activation energy.

  • PDF

Fabrication and Characterization of Tunable Bandpass Filter using BST Thin Films

  • Kim, Il-Doo;Kim, Duk-Su;Park, Kyu-Sung;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.581-584
    • /
    • 2002
  • In this work, a CPW resonator was designed and fabricated to investigate the basic microwave properties, such as effective dielectric constant, of BST thin films. Their properties were used as basic data to simulate and design CPW tunable bandpass filter. We also report on gold/$Ba_{0.5}Sr_{0.5}TiO_3$(BST) ferroelectric thin film C-band tunable bandpass filters(BPFs) designed and fabricated on magnesium oxide substrates using CPW structure. The 2 pole filter was designed for a center frequency of 5.88 GHz with a bandwidth of 9 %. The BST based CPW filter offers a high sensitivity parameter as well as a low loss parameter. The tuning range for the bandpass filter with CPW structure was determined to be 170 MHz.

  • PDF

Dielectric Properties of Poly(vinyl phenol)/Titanium Oxide Nanocomposite Thin Films formed by Sol-gel Process

  • Myoung, Hey-J;Kim, Chul-A;You, In-Kyu;Kang, Seung-Y;Ahn, Seong-D;Kim, Gi-H;Oh, ji-young;Baek, Kyu-Ha;Suh, Kyung-S;Chin, In-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1572-1575
    • /
    • 2005
  • Poly(vinyl phenol)(PVP)/$TiO_2$ nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate insulating material for a organic thin film transistor. The surface composition, the morphology, and the thermal and electrical properties of the hybrid nanocomposite films were observed by ESCA, scanning electron microscopy (SEM), atomic force microscopy(AFM), and thermogravimetric analysis (TGA). Thin hybrid films exhibit much higher dielectric constants (7.79 at 40wt% metal alkoxide).

  • PDF

Effect of Sputtering Power on Optical and Electrical Properties of SnOx Electron Transport Layer Deposited by RF-magnetron Sputtering (RF-마그네트론 스퍼터링으로 증착된 산화주석 전자수송층의 광학적 및 전기적 특성에 대한 증착 전력의 영향)

  • Hwang, Ji Seong;Lee, Wonkyu;Hwang, Jae Keun;Lee, Sang-Won;Hyun, Ji Yeon;Lee, Solhee;Jeong, Seok Hyun;Kang, Yoonmook;Kim, Donghwan;Lee, Hae-Seok
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • The properties of the electron transport layer (ETL) have a great effect on perovskite solar cell performance. Depositing conformal SnO2 ETL on bottom textured silicon cells is essential to increase current density in terms of the silicon-perovskite tandem solar cells. In the recent study, the SnO2 electron transport layer deposited by the sputtering method showed an efficiency of 19.8%. Also, an electron transport layer with a sputtered TiO2 electron transport layer in a 4-terminal tandem solar cell has been reported. In this study, we synthesized SnOx ETL with a various sputtering power range of 30-60W by Radio-frequency (RF)-magnetron sputtering. The properties of SnOx thin film were characterized using ellipsometer, UV-vis spectrometer, and IV measurement. With a sputtering power of 50W, the solar cell showed the highest efficiency of 13.3%, because of the highest fill factor by the conductivity of SnOx film.

Electrospinning Technology for Novel Energy Conversion & Storage Materials

  • Jo, Seong-Mu;Kim, Dong-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Electrospinning has known to be very effective tool for production of versatile one-dimensional (1D) nanostructured materials such as nanofibers, nanorod, and nanotubes and for easily assembly to two-, three-dimensional(2D, 3D) nanostructures such as thin film, membrane, and nonwoven web, etc. We have studied on the electrospinning technology for novel energy storage and conversion materials such as advanced separator, dye sensitized solar cell, supercapacitor, etc. High heat-resistive nanofibrous membrane as a new separator for future lithium ion polymer battery was prepared by electrospinning of PVdF based composite solution. The novel nanofibrous composite nonwovens have tensile strength of above 50 MPa and modulus of above 1.3 GPa. The internal structure of the electrospun composite nanofiber with a diameter of few hundreds nanometer were composed of core-shell nanostructure. And also electrospun $TiO_2$ nanorod/nanosphere based dye-sensitized solar cells with high efficiency are successfully prepared. Some battery performance will be introduced.

  • PDF

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Manufacture of Inorganic Materials Thin Film Solar Cell using Titanium Dioxide (이산화티타니움을 사용한 무기질 박막형 태앙전지의 제작)

  • Lee, Kyung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.451-463
    • /
    • 2009
  • The purpose of this research is to develop thin film materials and fabrication process for efficient $TiO_2$/CdTe solar cells. In this work photocatalyst titanium dioxide was prepared by sol-gel procedure according to reaction condition, the mole ratio of $H_2O$/TTIP, pH of solution and aging condition of powder. The prepared titanium dioxide was thermally treated from 300 to $750^{\circ}C$. Maximum intensity of anatase phase of titanium dioxide was achieved by calcination at $600^{\circ}C$ for 2 hr. And it was mixture of anatase and rutile phase when temperature of calcination was $750^{\circ}C$. It has been known that the properties of synthesized titanium dioxide according to aging time and calcination temperature was converted to anatase phase crystal on increasing of aging time. Also the current density has been increased with aging time and temperature, the efficiency has been increased with because of reason on above results. The formation of chemical bonding on oxygen and cadmium telluride under oxygen circumstances had been observed, and oxygen of thin film surface on cadmium telluride had been decreased with the treatment of chromate and hydrazine. As results had been shown that the energy conversion efficiency of cadmium telluride use by rapidly treatmented heat at the condition of $550^{\circ}C$ under air circumstance got 12.0%, 6.0% values according to $0.07cm^2$, $1.0cm^2$ surface area, respectively.

Ellipsometric study of Mn-doped $Bi_4Ti_3O_{12}$ thin films

  • Yoon, Jae-Jin;Ghong, Tae-Ho;Jung, Yong-Woo;Kim, Young-Dong;Seong, Tae-Geun;Kang, Lee-Seung;Nahm, Sahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.173-173
    • /
    • 2010
  • $Bi_4Ti_3O_{12}$ ($B_4T_3$) is a unique ferroelectric material that has a relatively high dielectric constant, high Curie temperature, high breakdown strength, and large spontaneous polarization. As a result this material has been widely studied for many applications, including nonvolatile ferroelectric random memories, microelectronic mechanical systems, and nonlinear-optical devices. Several reports have appeared on the use of Mn dopants to improve the electrical properties of $B_4T_3$ thin films. Mn ions have frequently been used for this purpose in thin films and multilayer capacitors in situations where intrinsic oxygen vacancies are the major defects. However, no systematic study of the optical properties of $B_4T_3$ films has appeared to date. Here, we report optical data for these films, determined by spectroscopic ellipsometry (SE). We also report the effects of thermal annealing and Mn doping on the optical properties. The SE data were analyzed using a multilayer model that is consistent with the original sample structure, specifically surface roughness/$B_4T_3$ film/Pt/Ti/$SiO_2$/c-Si). The data are well described by the Tauc-Lorentz dispersion function, which can therefore be used to model the optical properties of these materials. Parameters for reconstructing the dielectric functions of these films are also reported. The SE data show that thermal annealing crystallizes $B_4T_3$ films, as confirmed by the appearance of $B_4T_3$ peaks in X-ray diffraction patterns. The bandgap of $B_4T_3$ red-shifts with increasing Mn concentration. We interpret this as evidence of the existence deep levels generated by the Mn transition-metal d states. These results will be useful in a number of contexts, including more detailed studies of the optical properties of these materials for engineering high-speed devices.

  • PDF

Stability Improvement of Amorphous-InGaZnO Thin-Film-Transistors Based SnO2 Extended-Gate Filed-Effect-Transistor Using Microwave Annealing

  • Lee, In-Gyu;Im, Cheol-Min;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.420-420
    • /
    • 2014
  • 최근, 과학 기술이 발달함에 따라 현장에서의 실시간 검사 및 자가 지단 등 질병 치유에 대한 사람들의 관심이 증가하고 있으며, 이에 따라 의료, 환경, 산업과 같은 많은 분야에서 바이오 센서에 대한 연구가 활발하게 이루어지고 있다. 그 중, EGFET는 전해질 속의 각종 이온 농도를 전기적으로 측정하는 바이오 센서로, 외부 환경으로부터 안전하고, 제작이 쉬우며, 재활용이 가능하여 비용을 절감 할 수 있다는 장점을 가지고 있다 [1]. EGFET는 감지부와 FET부로 분리된 구조를 가지고 있으며, 감지부의 감지막으로는 Al2O3, HfO2, $TiO_2$, SnO2 와 같은 다양한 물질들이 사용되고 있다. 그 중, SnO2는 우수한 감도와 안정성을 가지고 있는 물질로 추가적인 열처리 공정 없이도 우수한 감지 특성을 나타내기 때문에 본 연구에서 감지막으로 사용하였다. 한편, EGFETs 의 FET부로는 기존의 비정질 실리콘 TFTs 에 비해 10배 이상의 높은 이동도와 온/오프 전류비를 갖는 InGaZnO 를 채널층으로 사용한 TFTs 를 사용하였다. a-IGZO 는 넓은 밴드 갭으로 인해 가시광 영역에서 투명하며, 향후 투명 바이오센서 제작 시, 물질들 사이의 반응을 전기적 신호뿐만 아니라 광학적인 분석 방법으로도 검출이 가능하기에 고 신뢰성을 갖는 센서의 제작이 가능할 것으로 기대된다. 한편, a-IGZO TFTs 의 경우 우수한 전기적 특성을 나타냄에도 불구하고 소자 동작 시 문턱 전압이 불안정하다는 단점이 있으며 [2], 이러한 문제의 개선과 향후 투명 기판 위에서의 소자 제작을 위해서는 저온 열처리 공정이 필수적이다. 따라서, 본 연구에서는 저온 열처리 공정인 u-wave 열처리를 통하여 a-IGZO TFTs 의 전기적 특성 및 안정성을 향상시켰으며, 9.51 [$cm2/V{\cdot}s$]의 이동도와 135 [mV/dec] 의 SS값, 0.99 [V]의 문턱 전압, 1.18E+08의 온/오프 전류 비를 갖는 고성능 스위칭 TFTs 를 제작하였다. 최종적으로, 제작된 a-IGZO TFTs 를 SnO2 감지막을 갖는 EGFETs 에 적용함으로써 우수한 감지 특성과 안정성을 갖는 바이오 센서를 제작하였다.

  • PDF

Effect of HA Crystals Precipitated by Hydrothermal-Treatment on the Bioactivity of Ti-6Al-7Nb Alloy (열수처리에 의해 석출된 HA 결정이 Ti-6Al-7Nb 합금의 생체활성에 미치는 영향)

  • Kwon O. S.;Choi S. K.;Moon J. W.;Lee M. H.;Bae T. S.;Lee O. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.607-613
    • /
    • 2004
  • This study was to investigate the surface properties of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}$-glycerophosphate disodium salt hydrate($DL-{\alpha}$-GP) and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 2 hrs to produce a thin outermost layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. The size of micropores and the thickness of oxide film increased and complicated multilayer by increasing the spark forming voltage. Needle-like HA crystals were observed on anodic oxide film after the hydrothermal treatment at $300^{\circ}C$ for 2 hrs. When increasing $DL-{\alpha}$-GP in electrolyte composition, the precipitated HA crystals showed the shape of thick and shorter rod. However, when increasing CA, the more fine needle shape HA crystals were appeared. The bioactivity in Hanks' solution was accelerated when the oxide films composed with strong anatase peak with presence of rutile peak. The increase of amount of Ca and P was observed in groups having bioactivity in Hanks' solution. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal and it was closer to 1.67 as increasing the immersion time in Hanks' solution.