• Title/Summary/Keyword: $TiO_2$ nanoparticle

Search Result 151, Processing Time 0.032 seconds

Nanocomposite Cover-layer for NFR Media (Nanocomposite 이용한 NFR Media 커버층 특성연구)

  • Kim, Jin-Hong;Lee, Jun-Seok;Seo, Jeong-Kyo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • [ $TiO_2$ ] nanoparticles are added into UV curable resin to increase the refractive index of the cover-layer which is laminated on the media for cover-layer incident NFR. High refractive index is required for the cover-layer operating for the solid immersion lens optics with high effective numerical aperture. The eyepattern could be achieved from the cover-layer coated 20 GB ROM disc in which the refractive index of the cover-layer was 1.75, but the gap servo was unstable due to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is not serious, the rough microstructure is developed by adding the nanoparticles in the organic binder material. To achieve smooth surface for the stable gap servo, some special techniques should be added, for example the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  • PDF

Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots (분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열)

  • Cho, Geun Tae;Lee, Jong Hyeon;Nam, Hye Jin;Jung, Duk Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1081-1086
    • /
    • 2008
  • QDs-LEDs(quantum dot light emitting device) should contain well-organized arrays of QDs on an electron transport layer. Thin films of CdSe/ZnS core-shell QDs were successfully fabricated on $TiO_2$ substrates by using PDMS stamp and micro contact printing method. 2-Carboxyethylphosphonic acid(CAPO) and 1,6-hexanedithiol(HDT) were employed as molecular linkers in assembling CdSe/ZnS core-shell QDs with high-density and uniform array. The CAPO increased the binding strength between the QDs and the substrates, and the HDT induced the strong inter-particle attractions of assembled QDs. The assembling properties of QDs thin films were characterized by SEM, AFM, optical microscope and photoluminescence spectroscope(PL).

Effect of Nano Particles on Fertilized Egg of Crossostrea gigas (참굴(Crassostrea gigas) 수정란에 미치는 나노입자의 영향)

  • Lee, Byeong-Woo;Park, Chan-Il;Choi, Kwang-Soo;Kim, Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • A Nano particle is a small particle with at least one dimension less than 100 nm Nanoparticle is currently used in an area cf intense scientific research, due to a wide variety cf potential applications in biomedical, optical, and electronic fields. In order to know the biological effect of the nine Nano particles on fertilized egg of Crassostrea gigas experiments were performed Development rates of control (free Nano particles) C. gigas to a particular larval stage (D-shape) was 78%. Development rate of C gigas to a parcicular larval stage (D-shape) after 24 hours exposure to 0.05ppm of AGZ020, Nano silver, P-25 and SnO were 22%, 52%, 58% and 76%, respectively. However, all fertilized eggs were destructed within 8 hours afters exposure to 20ppm of respective particles. On the other hand, All fertilized eggs were not affected after 24 hours respective exposure to 0.05ppm of In, Sb, Sn, Zn, and Ag-$TiO_2$ particles. However, development rates of C. gigas after 24 hours exposure to 20ppm of In, Sb, Sn, Zn, Ag-$TiO_2$ were 57%, 60%, 50%, 65%, and 64% respectively.

  • PDF

Fabrication of functional nanoparticles by layer-by-layer self-assembly method (LBL 법을 이용한 기능성 나노 입자 제조)

  • Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.305-310
    • /
    • 2009
  • $TiO_2$ thin films consisting of positively charged poly (diallyldimethylammonium chloride) (PDDA) and negatively charged titanium (IV) bis (ammonium lactato) dihydroxide (TALH) were successfully fabricated on a poly (methyl methacrylate) (PMMA) by layer-by-layer (LBL) self-assembly method. By the measurement of quartz crystal microbalance (QCM), it was found that as the solution pH of TALH decreased, the deposition volume of TALH increased and the thickness of (PDDA/TALH) thin film coated on the surface of PMMA particles increased. The PMMA particles coated with the coating sequence of (PDDA/TALH)n showed the variation of color changes as a function of the number of bilayer. The number of bilayer (n) of (PDDA/TALH) thin films was 10 and 20, the values of $a^*$ and $b^*$ decreased from those of PMMA particles without coating films and the color changes was shifted to green and blue direction in the $a^*$, $b^*$ chromaticity diagram. And then, the number of n increased to 30 and 40, the values of $a^*$ and $b^*$ increased and the color changes was shifted to red and yellow direction, respectively. Finally the PMMA particles coated with $(PDDA/TALH)_{50}$ thin film showed a little same value of $a^*$ and $b^*$ with the PMMA particles without (PDDA/TALH) thin film.

Functionalized Raspberry-Like Microparticles obtained by Assembly of Nanoparticles during Electrospraying

  • Cho, Eun Chul;Hwang, Yoon Kyun;Jeong, Unyong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1784-1788
    • /
    • 2014
  • The present study suggests a novel method to produce raspberry-like microparticles containing diverse functional materials inside. The raspberry-like microparticles were produced from a random assembly of uniformly-sized poly(methyl methacrylate) (PMMA) nanoparticles via electrospraying. The solution containing the PMMA nanoparticles were supplied through the inner nozzle and compressed air was emitted through the outer nozzle. The air supply helped fast evaporation of acetone, so it enabled copious amount of microparticles as dry powder. The microparticles were highly porous both on the surface and interiors, hence various materials with a function of UV-blocking ($TiO_2$ nanoparticles and methoxyphenyl triazine) or anti-aging (ethyl(4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate)) were loaded in large amount (17 wt % versus PMMA). The surface and interior structures of the microparticles were dependent on the characteristics of functional materials. The results clearly suggest that the process to prepare the raspberry-like microparticles can be an excellent approach to generate functional microstructures.

Evaluation of dispersion degree of nanoparticles in TiO2/epoxy resin nanocomposites

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.338-344
    • /
    • 2014
  • The purpose of this study was to evaluate the dispersion degree of particles using a nanoindentation test for titanium oxide nanoparticles/epoxy resin nanocomposites. Thus, the effects of the particle size and weight fraction, dispersion agent, and position of the sample on the modulus and degree of particle dispersion in the nanocomposites were investigated. As a result, the dispersion degree of large particles was found to be better than that of smaller particles in composites. It could be found that the aggregation or agglomeration of small particles with large surface energy occurred more easily in nanocomposites because of the large specific surface area. The moduli of the upper side of the film-shaped sample obtained from a nanoindentation test were low scattering, while the values for the bottom side were high scattering. Thus, the dispersion situation of the nanoparticles on the upper side of film-shaped samples could be considered to be better than that for the bottom side. This could be concluded due to the non-uniform nanoparticle dispersion in the same sample. The modulus obtained from nanoindentation test increased slightly with the content of nanoparticles and increased with the indented depth for the same sample. The latter is presumably due to the increase in the accumulated particles facing the indenter with the indented depth. The nanoindentation test was found to be a useful method to evaluate the dispersion status of nanoparticles in nanocomposites.

Preparation of Nano-sized Titanium Oxide Powder Using Natural Polymer Matrix (천연고분자 매트릭스를 사용한 산화티탄 나노입자의 합성)

  • Kim, Soo-Jong;Han, Cheong-Hwa;Shim, Jae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.489-494
    • /
    • 2013
  • Nano-sized titanium oxide powders were synthesized by a polymer matrix technique using pulp and Titanium tetraisopropoxide (TTIP) as starting materials. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powders was controlled by preparation conditions, such as heat treatment temperature and time. After investigating various drying and heat treatment conditions, 50-100 nm sized homogeneous titanium oxide particles were obtained by treating at $600^{\circ}C$ for 1 h. The crystallization and rapid growth of particles was accelerated by increasing heat treatment temperature and time. Anatase phase generated below $600^{\circ}C$ transformed to the rutile phase with increasing heat treatment temperature. Moreover, above $800^{\circ}C$, heat treatment time had a very large influence on particle growth, and changing the heating condition also had a large influence on crystal growth.

Preparation and Characterization of $TiO_2$Filled Sulfonated Poly(ether ether ketone) Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Kim Han-Joo;Kalappa Prashantha;Son Won-Keun;Park Jong-Eun;Oshaka Tetsuya;Kim Hyun-Hoo;Hong Ji-Sook;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.165-170
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticle content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF