• Title/Summary/Keyword: $TiO_2$/Epoxy Resin Composite Material

Search Result 5, Processing Time 0.022 seconds

Nanoparticle effect on the mechanical properties of polymer composites (에폭시수지의 물성에 미치는 나노입자의 영향)

  • Moon, Chang-Kwon;Kim, Bu-Ahn
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.12-16
    • /
    • 2015
  • $TiO_2$ nanoparticle can be used for the improvement of performance of the epoxy resin composites. In this study, the effect of the size of $TiO_2$ nanoparticle on the mechanical properties for the epoxy resin composites was investigated. The size of $TiO_2$ nanoparticle was easily controlled by heat treatment. The heat treatment of $TiO_2$ nanoparticle was conducted between $700^{\circ}C$ and $900^{\circ}C$. The obtained size of $TiO_2$ nanoparticle was 20 nm, 100 nm and 200 nm respectively. As the diameter of $TiO_2$ nanoparticle is smaller, the epoxy resin composite specimen showed higher tensile strength. It was also found that Vickers hardness of epoxy resin was increased by the addition of $TiO_2$ nanoparticle. But the size of $TiO_2$ nanoparticle did not strongly affected to the Vickers hardness of this material. The fracture surface of epoxy resin showed clear difference by the size of $TiO_2$ nanoparticlet.

Effect of Nitrogen Gas Pressure on the Mechanical Properties of Polymer Composite Materials (고분자 복합재료의 기계적 물성에 미치는 질소기압의 영향)

  • Kim, Bu-An;Hwang, Hyun-Young;Kang, Suk-Jun;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.14-19
    • /
    • 2016
  • This study is about the effect of nitrogen gas pressures during manufacturing process on the mechanical properties of composite materials. $TiO_2$/epoxy resin nanocomposites and carbon fiber reinforced epoxy resin(CFRP) composites were fabricated under various nitrogen gas pressures. Tensile strength test, vicker's hardness test and fracture surface observation were carried out to investigate the effect of nitrogen gas pressure. As a result, the tensile strength of nanocomposite and CFRP composites showed clearly increasing tendency by a change in the nitrogen gas pressure up to 3.0 atm and then the tensile strength decreased a little. However, the vicker's hardness of $TiO_2$/epoxy nanocomposites showed same hardness values regardless of the nitrogen gas pressures.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates

  • Paik Kyung-Wook;Hyun Jin-Gul;Lee Sangyong;Jang Kyung-Woon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.201-212
    • /
    • 2005
  • [ $Epoxy/BaTiO_3$ ] composite embedded capacitor films (ECFs) were newly designed fur high dielectric constant and low tolerance (less than ${\pm}15\%$) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of specially formulated epoxy resin and latent curing agent, and in terms of coating process, a comma roll coating method is used for uniform film thickness in large area. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ composite ECF is measured with MIM capacitor at 100 kHz using LCR meter. Dielectric constant of $BaTiO_3$ ECF is bigger than that of $SrTiO_3$ ECF, and it is due to difference of permittivity of $BaTiO_3\;and\;SrTiO_3$ particles. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ ECF in high frequency range $(0.5\~10GHz)$ is measured using cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. Dielectric constant is calculated by observing the frequencies of the resonant cavity modes. About both powders, calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of epoxy matrix. For $BaTiO_3$ ECF, there is the dielectric relaxation at $5\~9GHz$. It is due to changing of polarization mode of $BaTiO_3$ powder. In the case of $SrTiO_3$ ECF, there is no relaxation up to 10GHz. Alternative material for embedded capacitor fabrication is $epoxy/BaTiO_3$ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming capacitor partially in desired part. But the screen printing makes surface irregularity during mask peel-off, Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, dielectric layer with improved thickness uniformity is successfully demonstrated. Using $epoxy/BaTiO_3$ composite ECP, dielectric constant of 63 and specific capacitance of 5.1nF/cm2 were achieved.

  • PDF

Analysis of electrical, thermal characteristic of Nano/Micro Epoxy composite (나노/마이크로 에폭시 복합체의 전기적, 열적특성 분석)

  • Jung, Eui-Hwan;Yoon, Jae-Hun;Lim, Kee-Joe;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.99-99
    • /
    • 2010
  • Polymer nanocomposite has been attracting much attention as a new insulation material, since homogeneous dispersion of nm-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown strength of Nano-TiO2 and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulation materials. Nano-TiO2 particle size is about 10nm and composites ratio was resin (100) : hardener (82) : accelerator (1.5). AC breakdown test was performed at room temperature (25 [$^{\circ}C$], 80 [$^{\circ}C$] and 100 [$^{\circ}C$] in the vicinity of Tg (90[$^{\circ}C$]). And thermal conductivity were measured by ASTM-D5470.

  • PDF