• Title/Summary/Keyword: $Sr_2Ru_{1-x}Cu_xO_{4-y}$

Search Result 3, Processing Time 0.018 seconds

Study on the Structural and Transporting Property of Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) (Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) 화합물의 구조 및 전달 특성에 대한 연구)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.614-618
    • /
    • 2003
  • $Sr_2Ru_{1-x}Cu_xO_{4-y}(0.0{\le}x{\le}0.5)$ compounds were prepared using a conventional solid state reaction. Based on the Rietveld refinements of X-ray diffraction results, it is revealed that $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds are the single phases with K2NiF4 type tetragonal system in the range of 0=x=0.3, while the mixed phases of$Sr_2RuO_4$ and $Sr_2CuO_3$ in the range of $0.4{\le}x{\le}0.5$. By means of X-ray photoelectron spectroscopy, the valence states of Ru and Cu in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, have been confirmed to 4+ and 2+, respectively. The bond length difference between $Ru-O_1 ({\times}4)\;and\;Ru-O_2 ({\times}2)\;in\;RuO_6$ octahedron is gradually decreased with increasing Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, which results in the lower c/a ratio. So, it might be assured that the variation of local symmetry of $RuO_6$ octahedron is very closely related to the transporting property of $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds. The behavior of resistivity discloses that the metallic property in $Sr_2RuO_4$ changes into the semiconducting one in proportion to the Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$.

Superconducting and Magnetic Properties of the $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ System ($(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ 계의 초전도 및 자기적 특성)

  • Lee, H.K.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.163-168
    • /
    • 2012
  • The effects of Ta substitution on the superconducting and magnetic properties of the $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z(0{\leq}x{\leq}0.5)$ system have been investigated. The X-ray diffraction measurements indicate that the Ta ion replaces Ru sites up to x = 0.4. It is found that the Ta substitution for Ru significantly reduces the weak-ferromagnetic component of the field-cooled magnetic susceptibility without an appreciable change of room temperature thermopower at lower Ta doping level below x = 0.2. The resistive transition temperature tends to decrease monotonically from 27 K for the x = 0 sample to 16 K (9 K) for the x = 0.4 (x = 0.5) sample. These results suggest that superconductivity of the $(Ru_{1-x}Ta_x)Sr_2(Gd_{1.4}Ce_{0.6})Cu_2O_z$ compound is not significantly affected by the magnetic state of the Ru sublattice. The experimental results are discussed in connection with previous reports on the effects of Nb substitution.

Superconductivty and magnetic properties of $(Ru_{1-x}Nb_x)Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$

  • Lee, H.K.;Bae, S.M.;Lee, J.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.1-4
    • /
    • 2013
  • We investigated the effect of Nb substitution for Ru on the structural and magnetic properties of $(Ru_{1-x}Nb_x)\;Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$ Samples. X-ray diffraction measurements indicated that nearly single-phase samples are formed in the range from x = 0 to 1.0. The superconducting transition temperature determined from the inflection in the field-cooled magnetic susceptibility decreased only slightly from $T_c$ = 25 K for x = 0 to $T_c$ = 22 K for x = 1.0, in consistent with the change in room temperature thermopower of the samples. However, the Nb substitution for Ru above x = 0.25 significantly suppressed the weak ferromagnetic component of the field-cooled magnetic susceptibility. It was also found that the Nb substitution for Ru results in an enhanced diamagnetic susceptibility with Nb content above x = 0.5 in both zero field-cooled and field-cooled magnetization measurements, in contrast to the behavior of the samples with $x{\leq}0.5$ in which the diamagnetic susceptibility decreases as the Nb content increases.