• Title/Summary/Keyword: $SrTiO_3$films

Search Result 475, Processing Time 0.03 seconds

Ferroelectric Properties of SBT Capacitor with Annealing Times

  • Cho, Choon-Nam;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.66-70
    • /
    • 2004
  • The Sr$\_$0.7/Bi$\_$2.3/Ta$_2$O$\_$9/(SBT)thin films are deposited on Pt-coated electrode (Pt/TiO$_2$/SiO$_2$/Si) using a RE magnetron sputtering method. The ferroelectric properties of SBT capacitors with annealing times were studied. As a result of conducting the X-ray diffraction analysis and the electron microscopy analysis, the perovskite phase began to grow from 10 minutes after annealing the specimen, and excellent crystallization was accomplished at 60 minutes after annealing the specimen. The remanet polarization (2P$\_$r/) value and the coercive electric field (E$\_$c/) of the SBT thin film specimen showed the most excellent characteristics at 60 minutes after annealing the specimen, which were approximately 12.40 C/$\textrm{cm}^2$ and 30 kV/cm, respectively. The leakage current density of the SBT thin film specimen as annealed for 60 minutes was approximately 2.81${\times}$10$\^$-9/A/$\textrm{cm}^2$.

Fabrication and Characterization of Tunable Bandpass Filter using BST Thin Films

  • Kim, Il-Doo;Kim, Duk-Su;Park, Kyu-Sung;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.581-584
    • /
    • 2002
  • In this work, a CPW resonator was designed and fabricated to investigate the basic microwave properties, such as effective dielectric constant, of BST thin films. Their properties were used as basic data to simulate and design CPW tunable bandpass filter. We also report on gold/$Ba_{0.5}Sr_{0.5}TiO_3$(BST) ferroelectric thin film C-band tunable bandpass filters(BPFs) designed and fabricated on magnesium oxide substrates using CPW structure. The 2 pole filter was designed for a center frequency of 5.88 GHz with a bandwidth of 9 %. The BST based CPW filter offers a high sensitivity parameter as well as a low loss parameter. The tuning range for the bandpass filter with CPW structure was determined to be 170 MHz.

  • PDF

Dry etching properties of PST thin films using chlorine-based inductively coupled plasma (Chlorine-based 유도결합 플라즈마를 이용한 PST 박막의 건식 식각 특성)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Lee, Cheol-In;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.400-403
    • /
    • 2003
  • Etching characteristics of (Pb,Sr)$TiO_3$(PST) thin films were investigated using inductively coupled chlorine based plasma system as functions of gas mixing ratio, RF power and DC bias voltage. It was found that increasing of Ar content in gas mixture lead to sufficient increasing of etch rate and selectivity of PST to Pt. The maximum etch rate of PST film is $562\;{\AA}$/min and the selectivity of PST film to Pt is 0.8 at $Cl_2/(Cl_2+Ar)$ of 20 %. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products.

  • PDF

Structural and Dielectric Properties of BSCT Thick films with Various Sintering Temperature (소결온도에 따른 BSCT 후막의 구조적, 유전적 특성)

  • 이성갑;이영희;이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.304-310
    • /
    • 2003
  • (Ba$\sub$0.6-x/Sr$\sub$0.4/Ca$\sub$x/)TiO$_3$(BSCT) (x=0.10, 0.15, 0.20) powder, prepared by the sol-Bel method, were mixed with organic binder and then BSCT thick films were fabricated by the screen printing techniques on alumina substrates using the BSCT paste. The structural and the dielectric Properties were investigated for various composition ratio and sintering temperature. The second phase appeared in BSCT(40/40/20) thick film sintered at 1450$^{\circ}C$. BSCT thick film thickness, obtained by four printings, was approximately 110∼120$\mu\textrm{m}$. The Curie temperature and dielectric constant at room temperature were decreased with increasing Ca content. The relative dielectric constant, dielectric loss and tunability of the BSCT(50/40/10) specimen, which was sintered at 1420$^{\circ}C$ and measured at 1MHz, were about 910, 0.46% and 9.28% at 5㎸/cm, respectively.

In Situ Spectroscopy in Condensed Matter Physics

  • Noh, Tae Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.92-92
    • /
    • 2014
  • Recently, many state-of-art spectroscopy techniques are used to unravel the mysteries of condensed matters. And numerous heterostructures have provided a new avenue to search for new emergent phenomena. Especially, near the interface, various forms of symmetry-breaking can appear, which induces many novel phenomena. Although these intriguing phenomena can be emerged at the interface, by using conventional measurement techniques, the experimental investigations have been limited due to the buried nature of interface. One of the ways to overcome this limitation is in situ investigation of the layer-by-layer evolution of the electronic structure with increasing of the thickness. Namely, with very thin layer, we can measure the electronic structure strongly affected by the interface effect, but with thick layer, the bulk property becomes strong. Angle-resolved photoemission spectroscopy (ARPES) is powerful tool to directly obtain electronic structure, and it is very surface sensitive. Thus, the layer-by-layer evolution of the electronic structure in oxide heterostructure can be investigated by using in situ ARPES. LaNiO3 (LNO) heterostructures have recently attracted much attention due to theoretical predictions for many intriguing quantum phenomena. The theories suggest that, by tuning external parameters such as misfit strain and dimensionality in LNO heterostructure, the latent orders, which is absent in bulk, including charge disproportionation, spin-density-wave order and Mott insulator, could be emerged in LNO heterostructure. Here, we performed in situ ARPES studies on LNO films with varying the misfit strain and thickness. (1) By using LaAlO3 (-1.3%), NdGaO3 (+0.3%), and SrTiO3 (+1.7%) substrates, we could obtain LNO films under compressive strain, nearly strain-free, and tensile strain, respectively. As strain state changes from compressive to tensile, the Ni eg bands are rearranged and cross the Fermi level, which induces a change of Fermi surface (FS) topology. Additionally, two different FS superstructures are observed depending on strain states, which are attributed to signatures of latent charge and spin orderings in LNO films. (2) We also deposited LNO ultrathin films under tensile strain with thickness between 1 and 10 unit-cells. We found that the Fermi surface nesting effect becomes strong in two-dimensions and significantly enhances spin-density-wave order. The further details are discussed more in presentation. This work was collaborated with Hyang Keun Yoo, Seung Ill Hyun, Eli Rotenberg, Ji Hoon Shim, Young Jun Chang and Hyeong-Do Kim.

  • PDF

Crystal Structure and Physical Property of Tetragonal-like Epitaxial Bismuth Ferrites Film

  • Nam, Joong-Hee;Biegalski, Michael;Christen, Hans M.;Kim, Byung-Ik
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.7-8
    • /
    • 2011
  • Basically, the lattice mismatch between film and substrate can make those BiFeO3(BFO) films distorted with strain structure. BFO phase can be stabilized on LaAlO3(LAO) represents the example of a multiferroic with giant axial ratio. Its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion and related to the rotation of the oxygen octahedra. In this study, we show that phases with a tetragonal-like epitaxial BFO films can indeed be ferroelectric and also can be stabilized via epitaxial growth onto LAO. Recent reports on epitaxial BFO films show that the crystal structure changes from nearly rhombohedral ("R-like") to nearly tetragonal("T-like") at strains exceeding approximately -4.5%, with the "T-like" structure being characterized by a highly enhanced c/a ratio. While both the "R-like" and the "T-like" phases are monoclinic, our detailed x-ray diffraction results reveal asymmetry change from MA and MC type, respectively. By applying additional strain or by modifying the unit cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the "T-like" MC phase is reduced, i.e. the system approaches a true tetragonal symmetry. There are two different M-H loops for $Bi_{1-x}Ba_xFeO_{3-{\delta}}$(BBFO) and BFO films on SrTiO3(STO) & LAO substrates. Along with the ferroelectric characterization, these magnetic data indicate that the BFO phase stabilized on LAO represents the first example of a multiferroic with giant axial ratio. However, there is a significant difference between this phase and other predicted ferroelectrics with a giant axial ratio: its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion. Therefore, in going from bulk to highly-strained films, a phase sequence of rhombohedral(R)-to-monoclinic ["R-like" MA-to-monoclinic, "T-like" MC-to-tetragonal (T)] is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e. near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. Those major results are summarized as follows ; 1) Ba-doping increases the unit cell volume, 2) BBFO on LAO can be fully strained up to x=0.08 as a strain limit (Fig. 1), 3) P(E) & M(H) properties can be tuned by the variation of composition, strain, and film thickness.

  • PDF

Growth of Large Area BSTO Thin Films using Pulsed Laser Deposition (펄스레이저 증착법을 이용한 대면적 BSTO 박막의 성장)

  • Kang, Dae-Won;Kwak, Min-Hwan;Kang, Seong-Beom;Paek, Mun-Cheol;Choi, Sang-Kuk;Kim, Sung-Il;Ryu, Han-Cheol;Kim, Ji-Seon;Jeong, Se-Young;Chung, Dong-Chul;Kang, Kwang-Yong;Lee, Beong-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.249-249
    • /
    • 2009
  • We have grown large area BSTO($(Ba_{1-x}Sr_x)TiO_3$) thin films (x=0.4) on 2 inch diameter MgO (001) single crystal substrates using a pulse laser deposition(PLD) system. Substrate temperature and oxygen pressure in the deposition chamber, and the laser optics for ablating a target have been controlled to obtain the uniform thickness and preferred orientation of the films. Results of x-ray diffraction and rocking curve analysis revealed that the BSTO films were grown on MgO substrates with a preferred orientation (002), and the full width half maximum of the rocking curve was measured to be 0.86 degree at optimum condition. Roughness of the films have been measured to be $3.42{\AA}$ rms by using atomic force microscopy. We have successfully deposited the large area BSTO thin films of $4000{\AA}$ thickness on 50 mm diameter MgO substrates.

  • PDF

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

PZT/LSMO/Pt Thin-Film by Pulse Laser and Sol-Gel Deposition (PZT/LSMO/Pt에 대한 펄스레이저 및 졸겔법에 의한 증착연구)

  • Choi, Kang-Ryong;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2005
  • This work is to present each properties and the interfacial characterization between PZT layer and LSMO layer of PZT/LSMO/Pt. LSMO thin film grown by KrF(248 nm) excimer lasers are used in pulsed in pulsed laser deposition(PLD). PZT coposites thin films were deposited by spin coating using a commercial resist spinner. LSMO thin film by deposition oxygen pressure 125 mtorr have rhombohedral structure on Pt(111) substrate. The PZT/LSM/Pt pre-orientate to [111] direction. The final thin films were shown that magnetic and electric property was typical value, respective. We report that the lattice between the PZT/LSMO thin film and the substrate plays a very important role and may control to another effects.

Electrical and interface characteristics of BST thin films grown by RF magnetron reactive sputtering (RF magnetron reactive sputtering 법으로 제작한 BST 박막의 전기적 및 계면 특성에 관한 연구)

  • 강성준;장동훈;유영섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.33-39
    • /
    • 1998
  • The BST (Ba$_{1-x}$ Sr$_{x}$TiO$_{3}$)(50/50) thin film has been grown by RF magnetron reactive sputtering and its characteristics such as crystallization, surface roughness, and electrical properties have been investigated with varying the film thickness. The crystallization and surface roughness of BST thin film are investigated by using XRD and AFM, respectively The BST thin film anealed at 800.deg. C for 2 min has pure perovskite structure and good surface roughness of 16.1.angs.. We estimate that the thickness and dielectric constant of interface layer between BST film and electrode are 3nm and 18.9, respectively, by measuring the capacitance with various film thickness. As the film thickness increases form 80nm to 240nm, the dielectric constant at 10kHz increases from 199 to 265 and the leakage current density at 200kV/cm decreases from 0.682.mu.A/cm$^{2}$ to 0.181 .mu.A/cm$^{2}$. In the case of 240nm-thick BST thin film, the charge storage density and leakage current density at 5V are 50.5fC/.mu.m$^{2}$ and 0.182.mu.A/cm$^{2}$, respectively. The values indicate that the BST thin film is a very useful dielectric material for the DRAM capacitor.or.

  • PDF