• 제목/요약/키워드: $Spin^c$-structure

검색결과 287건 처리시간 0.03초

Surface and Interface Magnetism in CoTi/FeTi/CoTi(110)

  • Lee G.H.;Jin Y. J.;Lee J. I.;Hong S.C.
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.1-4
    • /
    • 2005
  • We investigated the electronic structures and the magnetic properties of Ti-based intermetallic system of CoTi/FeTi/CoTi(110) surface and interface by using the all-electron full potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The calculated magnetic moments of interface Co and Fe atoms are 0.65 and 0.15 μ/sub B/, respectively. Surface and interface magnetism of CoTi/FeTi/CoTi(110) are discussed using the calculated density of states (DOS) and the spin densities.

Electrical Characteristics of Green Emitting Phosphor $Ir(PPY)_3$ Doped OLEDs

  • Kim, Jun-Ho;Kim, Yun-Myung;Ha, Yun-Kyung;Kim, Young-Kwan;Kim, Jung-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권3호
    • /
    • pp.53-57
    • /
    • 2001
  • The organic light-emitting devices (OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, internal quantum efficiency can reach 100%, compared with 25% in the case of the fluorescent material. Thus, phosphorescent OLEDs have recently been extensively studied and shown higher internal quantum efficiency than the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs with the green emitting phosphor, $Ir(ppy)_3$ (tris(2-phenylpyridine)iridium). The device with a structure of ITO/TPD$Ir(ppy)_3$ doped in BCP/BCP/$Alq_3$/Li:Al/Al was fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of $Ir(ppy)_3$, we fabricated several devices and investigated their characteristics.

  • PDF

Properties of Dy-doped $La_2O_3$ buffer layer for Fe-FETs with Metal/Ferroelectric/Insulator/Si structure

  • Im, Jong-Hyun;Kim, Kwi-Jung;Jeong, Shin-Woo;Jung, Jong-Ill;Han, Hui-Seong;Jeon, Ho-Seung;Park, Byung-Eun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.140-140
    • /
    • 2009
  • The Metal-ferroelectric-semiconductor (MFS) structure has superior advantages such as high density integration and non-destructive read-out operation. However, to obtain the desired electrical characteristics of an MFS structure is difficult because of interfacial reactions between ferroelectric thin film and Si substrate. As an alternative solution, the MFS structure with buffer insulating layer, i.e. metal-ferroelectric-insulator-semiconductor (MFIS), has been proposed to improve the interfacial properties. Insulators investigated as a buffer insulator in a MFIS structure, include $Ta_2O_5$, $HfO_2$, and $ZrO_2$ which are mainly high-k dielectrics. In this study, we prepared the Dy-doped $La_2O_3$ solution buffer layer as an insulator. To form a Dy-doped $La_2O_3$ buffer layer, the solution was spin-coated on p-type Si(100) wafer. The coated Dy-doped $La_2O_3$ films were annealed at various temperatures by rapid thermal annealing (RTA). To evaluate electrical properties, Au electrodes were thermally evaporated onto the surface of the samples. Finally, we observed the surface morphology and crystallization quality of the Dy-doped $La_2O_3$ on Si using atomic force microscopy (AFM) and x-ray diffractometer (XRD), respectively. To evaluate electrical properties, the capacitance-voltage (C-V) and current density-voltage (J-V) characteristics of Au/Dy-doped La2O3/Si structure were measured.

  • PDF

Electron Trapping and Transport in Poly(tetraphenyl)silole Siloxane of Quantum Well Structure

  • Choi, Jin-Kyu;Jang, Seung-Hyun;Kim, Ki-Jeong;Sohn, Hong-Lae;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2012
  • A new kind of organic-inorganic hybrid polymer, poly(tetraphenyl)silole siloxane (PSS), was invented and synthesized for realization of its unique charge trap properties. The organic portions consisting of (tetraphenyl)silole rings are responsible for electron trapping owing to their low-lying LUMO, while the Si-O-Si inorganic linkages of high HOMO-LUMO gap provide the intrachain energy barrier for controlling electron transport. Such an alternation of the organic and inorganic moieties in a polymer may give an interesting quantum well electronic structure in a molecule. The PSS thin film was fabricated by spin-coating of the PSS solution in THF organic solvent onto Si-wafer substrates and curing. The electron trapping of the PSS thin films was confirmed by the capacitance-voltage (C-V) measurements performed within the metal-insulator-semiconductor (MIS) device structure. And the quantum well electronic structure of the PSS thin film, which was thought to be the origin of the electron trapping, was investigated by a combination of theoretical and experimental methods: density functional theory (DFT) calculations in Gaussian03 package and spectroscopic techniques such as near edge X-ray absorption fine structure spectroscopy (NEXAFS) and photoemission spectroscopy (PES). The electron trapping properties of the PSS thin film of quantum well structure are closely related to intra- and inter-polymer chain electron transports. Among them, the intra-chain electron transport was theoretically studied using the Atomistix Toolkit (ATK) software based on the non-equilibrium Green's function (NEGF) method in conjunction with the DFT.

  • PDF

산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어 (Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds)

  • 신경식;이삼동;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구 (Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy)

  • 박창선;홍광준
    • 한국결정성장학회지
    • /
    • 제17권5호
    • /
    • pp.179-186
    • /
    • 2007
  • [ $CdGa_2Se_4$ ] 단결정 박막을 수평 전기로에서 합성한 $CdGa_2Se_4$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 $630^{\circ}C,\;420^{\circ}C$로 고정하여 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 X-선 요동곡선(DCRC)으로 부터 구하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 293K에서 운반자 농도와 이동도는 각각 $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$였다. $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 Varshni 공식에 따라 계산한 결과 $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$였다. 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting 에너지 ${\Delta}cr$값이 106.5meV이며 spinorbit 에너지 ${\Delta}so$값은 418.9meV임을 확인하였다. 10K일 때 광전류 세 봉우리들은 $A_{1^-},\;B_{1^-}$$C_{11}-exciton$ 봉우리임을 알았다.

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.105-112
    • /
    • 2020
  • Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

Synthesis and Characterization of Nickel(II) Tetraaza Macrocyclic Complex with 1,1-Cyclohexanediacetate Ligand

  • Lim, In-Taek;Kim, Chong-Hyeak;Choi, Ki-Young
    • 대한화학회지
    • /
    • 제62권6호
    • /
    • pp.427-432
    • /
    • 2018
  • The reaction of [$[Ni(L)]Cl_2{\cdot}2H_2O$ (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[$14,4,0^{1.18},0^{7.12}$]docosane) with 1,1-cyclohexanediacetic acid ($H_2cda$) yields mononuclear nickel(II) complex, [$Ni(L)(Hcda^-)_2$] (1). This complex has been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and thermogravimetric analyzer. The crystal structure of 1 exhibits a distorted octahedral geometry with four nitrogen atoms of the macrocycle and two 1,1-cyclohexanediacetate ligands. It crystallizes in the triclinic system P-1 with a = 11.3918(7), b = 12.6196(8), $c=12.8700(8){\AA}$, $V=1579.9(2){\AA}^3$, Z = 2. Electronic spectrum of 1 also reveals a high-spin octahedral environment. Cyclic voltammetry of 1 undergoes one wave of a one-electron transfer corresponding to $Ni^{II}/Ni^{III}$ process. TGA curve for 1 shows three-step weight loss. The electronic spectra, electrochemical and TGA behavior of the complex are significantly affected by the nature of the axial $Hcda^-$ ligand.

단층 poly(N-vinylcarbazole) 유기물 전기발광 소자의 제작 및 특성 (Fabrication and characteristics for the organic light emitting device from single layer poly(N-vinylcarbazole))

  • 윤석범;오환술
    • 전자공학회논문지D
    • /
    • 제35D권11호
    • /
    • pp.55-61
    • /
    • 1998
  • 정공 전달 중합체인 Poly(N-vinylcarbazole) (PVK)와 전자전달 유기물 재료인 2-(4-biphenyl)-5-(t-butyl-phenyl)-1,3,4-oxadiazole (Bu-PBD)에 발광 유기물 색소 Coumurine 6, TPB, Rhodamine B를 각각 도핑한 단층박막 유기물 전기발광 소자를 제작하였다. 스핀 코팅 방법에 의한 단층 구조와 가용성 재료의 사용으로부터 소자제작이 간단하였다. 활성영역은 인듐주석산화물(ITO) 과 알루미늄 전극 사이에 놓인 단층으로 구성하고 있다. 이러한 구조에서 전자와 정공의 전하가 각 전극에서 PVK : Bu-PBD 활성층으로 주입된다. 전압을 인가한 후 발광된 빛의 색은 각각 TPB, C6, Rhodamine B의 유기물 색소에 의해 481nm, 500nm, 585nm 파장을 갖는 푸른색, 초록색 및 오렌지색을 나타내었다. PVK유기물은 다른 발광색을 갖는 유기물 색소를 분자 적으로 도핑 함으로서 주요한 중합체로서 사용될 수 있다. 그리고 전기발광색은 전체 가시광선 파장 내로 조절될 수 있다.

  • PDF

NMR peak assignment for the elucidation of the solution structure of T4 Endonuclease V

  • Im, Hoo-Kang;Hyungmi Lihm;Yu, Jun-Suk;Lee, Bong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.183-183
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential stens: linear diffusion along dsDNA, pyrimidine dimer-specific binding,l pyrimidine dimer-DNA glycosylase activity, and Af lyase activity. Although crystal structure is known for this enzyme, solution structure has not been yet known. In order to elucidate the solution structure of this enzyme NMR spectroscopy was used. As a basis for the NMR peak assignment of the protein, HSQC spectrum was obtained on the uniformly $\^$15/N-labeled T4 endonuclease V. Each amide peak of the spectrum were classified according to amino acid spin systems by interpreting the spectrum of $\^$15/N amino acid-specific labeled T4 endonuclease V. The assignment was mainly obtained from three-dimensional NMR spectra such as 3D NOESY-HMQC, 3D TOCSY-HMQC. These experiments were carried out will uniformly $\^$15/N-labeled sample. In order to assign tile resonance of backbon atom, triple-resonance theree-dimensional NMR experiments were also performed using double labeled($\^$15/N$\^$13/C) sample. 3D HNCA, HN(CO)CA, HNCO, HN(CA)HA spectra were recorded for this purpose. The results of assignments were used to interpret the interaction of this enzyme with DNA. HSQC spectrum was obtained for T4 endonuclease V with specific $\^$15/N-labeled amino acids that have been known for important residue in catalysis. By comparing the spectrum of enzyme*DNA complex with that of the enzyme, we could confirm the important role of some residues of Thr, Arg, Tyr in activity. The results of assignments were also used to predict the secondary structure by chemical shift index (CSI).

  • PDF