• 제목/요약/키워드: $Spin^c$-structure

검색결과 287건 처리시간 0.025초

Band structure, electron-phonon interaction and superconductivity of yttrium hypocarbide

  • Dilmi, S.;Saib, S.;Bouarissa, N.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1338-1344
    • /
    • 2018
  • Band parameters and superconductivity of yttrium hypocarbide ($Y_2C$) have been investigated. The computations are performed using first-principles pseudopotential method within a generalized gradient approximation. The equilibrium lattice parameters have been determined and compared with experiment. Moreover, the material of interest is found to be stiffer for strains along the a-axis than those along the c-axis. A band-structure analysis of $Y_2C$ implied that the latter has a metallic character. The examination of Eliashberg Spectral Function indicates that Y-related phonon modes as well as C-related phonon modes are considerably involved in the progress of scattering of electrons. By integrating this function, the value of the average electron-phonon coupling parameter (${\lambda}$) is found to be 0.362 suggesting thus that $Y_2C$ is a weak coupling Bardeen-Copper-Schrieffer superconductor. The use of a reasonable value for the effective Coulomb repulsion parameter (${\mu}^*=0.10$) yielded a superconducting critical temperature $T_c$ of 0.59 K which is comparable with a previous theoretical value of 0.33 K. Upon compression (at pressure of 10 GPa) ${\lambda}$ and $T_c$ are increased to be 0.366 and 0.89 K, respectively, showing thus the pressure effect on the superconductivity in $Y_2C$. The spin-polarization calculations showed that the difference in the total energy between the magnetic and non-magnetic $Y_2C$ is weak.

MOD법으로 제조된 Copper Manganite 박막의 구조 및 NTCR 특성 (Micro-structure and NTCR Characteristics of Copper Manganite Thin Films Fabricated by MOD Process)

  • 이귀웅;전창준;정영훈;윤지선;남중희;조정호;백종후;윤종원
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.452-457
    • /
    • 2014
  • Copper manganite thin films were fabricated on $SiN_x/Si$ substrate by metal organic decomposition (MOD) process. They were burned-out at $400^{\circ}C$ and annealed at various temperatures ($400{\sim}800^{\circ}C$) for 1h in ambient atmosphere. Their micro-structure and negative temperature coefficient of resistance (NTCR) characteristics were analyzed for micro-bolometer application. The copper manganite film with a cubic spinel structure was well developed at $500^{\circ}C$ which confirmed by XRD and HRTEM analysis. It showed a low resistivity ($47.5{\Omega}{\cdot}cm$) at room temperature and high NTCR characteristics of $-4.12%/^{\circ}C$ and $-2.15%/^{\circ}C$ at room temperature and $85^{\circ}C$, implying a good thin film for micro-bolometer application. Furthermore, its crystallinity was enhanced with increasing temperature to $600^{\circ}C$. However, the appearance of secondary phase at temperatures higher than $600^{\circ}C$ lead to deteriorate the NTCR characteristics.

The Effect of Cr Dosage on FePt Nanoparticle Formation

  • Won, C.;Keavney, D.J.;Divan, R.;Bader, S.D.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.182-188
    • /
    • 2006
  • The search for high-density recording materials has been one of most active and vigorous field in the field of magnetism. $FePt-L1_{0}$ nanoparticle has emerged as a potential candidate because of its high anisotropy. In this paper, we provide an overview of recent work at Argonne National Laboratory that contributes to the ongoing dialogue concerning the relation between structure and properties of the FePt nanoparticle system. In particular we discuss the ability to control structure and properties via dosing with Cr. Cr-dosed FePt films were grown via molecular beam epitaxy and annealed at $550^{\circ}C$ in an ultrahigh vacuum chamber, and were studied with the surface magneto-optic Kerr effect (SMOKE), scanning electron microscopy (SEM) and x-ray magnetic circular dichroism (XMCD). We found that small dosage of Cr helps to generate $L1_{0}$ phase FePt magnetic nanoparticles with small size, defined shape and regular spatial distribution on MgO (001) substrate. The nanostructures are ferromagnetic with high magnetic coercivity (${\sim}0.9T$) and magnetic easy axis in the desired out-of-plane orientation. We also show that controlling the lateral region where nanostructures exist is possible via artificial patterning with Cr.

Properties of Xe plasma flat fluorescent lamp by screen printing

  • Lee, Yang-Kyu;Kang, Jong-Hyun;Yoon, Seung-Il;Kim, Tae-Kwon;Bae, Sung-Jo;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1386-1389
    • /
    • 2006
  • In this study, a plasma flat fluorescent lamp having a new structure was fabricated by screen printing technique. Coplanar types of silver electrodes with a dielectric layer were screen-printed on a rear glass plate, and then fired at $550^{\circ}C$ and $580^{\circ}C$, respectively. Phosphor was spin-coated on the dielectric layer with firing at $490^{\circ}C$. Several types of lamps were designed and its properties wee investigated with electrode shape, gas pressure, etc.

  • PDF

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

졸-겔법에 의한 이트리안 안정화 지프코니아박막의 결정화 (Crystallization of Yttria-Stabilized-Zirconia Film by Sol-Gel Process)

  • 서원찬;조차제;윤영섭;황운석
    • 한국표면공학회지
    • /
    • 제30권3호
    • /
    • pp.183-190
    • /
    • 1997
  • Fabrication and crystallization characteristics of yttria($T_2O_3$) stabilized zirconia(YSZ) thin film by sol-gel process were studied. YSZ sol was synthesized with zirconium n-propoxide($Zr(OC_3H_7)_4)$) and yttrium nitrate pentahydrate ($Y(NO_3)_3.5H_2O$). YSZ film was prepared by depositing the polymeric sol on porous $Al_2O_3$ substrate by spin-coating, and the film characteristics were investigated by FRIR, TG-DTA, XRD, DSC, optical microscopy and SEM. The film topology was uniform and cracks were not found. It was found that the annealing temperature and the concentration of stabilizer affect the crystallization of YSZ film. The YSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$, and it was not converted to cubic structure until $1100^{\circ}C$. It seemed that the grains were formed over $700^{\circ}C$and the average grain size was obtained about 0.2$\mu\textrm{m}$.

  • PDF

Sol-Gel법으로 제작한 PZT(40/60)/(60/40) 이종층 박막의 강유전특성 (Ferroelectric Properties of the PZT(40/60)/(60/40) Heterolayered Thin Film Prepared by Sol-Gel Method)

  • 김경균;정장호;박인길;이성갑;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 1998
  • Ferroelectric PZT(40/67)/PZT(60/40)heterolayered thin films were Prepared by the alkoxide-based Sol-Gel method. PZT(40/60) and PZT(60/40) stock solutions were made and spin-coated on the P7Ti/Si02/Si substrate alternately. These PZT(40/60) and PZT(60/40) films were dried at 300$^{\circ}C$ for 30min to remove organic materials and were sintered at 650$^{\circ}C$ for 1 hour to crystalize into a perovskite structure. The coating and heating procedure were repeated 6 times to form heterolayered films. Increasing the number of coating, coercive field was decreased. The relative dielectric constant, loss, remanent polarization and coercive field of the 4-coated PZT heterolayered were 1200, 4.1[%], 30.794[${\mu}$C/㎡] and 147.22[kV/cm], respectively.

  • PDF

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Sheikh, Md. Abdul Kuddus;Abdur, Rahim;Singh, Son;Kim, Jae-Hun;Min, Kyeong-Sik;Kim, Jiyoung;Lee, Jaegab
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.700-711
    • /
    • 2018
  • CdS synthesized by the chemical bath method at $70^{\circ}C$, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of $CH_3NH_3PbI_{3-x}Cl_x$ and a mixture of $PbCl_2$ and $PbI_2$ was deposited on CdS, followed by a sub-sequential reaction with MAI ($CH_3NH_3I$). The added $PbCl_2$ to $PbI_2$ in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of $PbI_2$, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to $PbI_2$, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of $PbCl_2$ to $PbI_2$. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.

Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy)

  • 홍명석;홍광준
    • 한국결정성장학회지
    • /
    • 제14권6호
    • /
    • pp.244-252
    • /
    • 2004
  • $CuISe_2$ 단결정 박막은 수평 전기로에서 합성한 $CuInSe_2$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 $620^{\circ}C$, $410^{\circ}C$로 고정하여 단결정 박막을 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 선 요동곡선(DCRC) 으로 부터 구하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 293K에서 운반자 농도와 이동도는 각각 $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs 였다. $CuAlSe_2$/Si(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293k에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g$(T)는 Varshni 공식에 따라 계산한 결과 1.1851 eV-($8.99\times10^{-4} eV/K)T^2$/(T+153k)였다. 광전류 스펙트럼으로 부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting Δcr값이 0.0087eV이며 spin-orbit Δso값은 0.2329 eV임을 확인하였다. 10K일 때 광전류 봉우리들은 n = 1일때 $A_1-, B_1$-와 $C_1$-exciton봉우리임을 알았다.

$CuPc/C_{60}$ 이종접합을 이용한 광기전 특성 (Photovoltaic Properties in $CuPc/C_{60}$ heterojunction Structure)

  • 김상걸;이헌돈;허성우;정동회;오현석;이원재;이준웅;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.65-68
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of ITO/PEDOT:PSS/CuPc/$C_{60}$/BCP/Al. The PEDOT:PSS layer is made by spin coating. and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light. we have obtained a value of $V_{oc}$=0.358V and $J_{sc}$=0.338mA/$cm^2$. A fill factor and efficiency are about 0.271 and 0.033%, respectively. A 500W xenon lamp(ORIEL) was used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF