• Title/Summary/Keyword: $Si_3N_4$ Ceramics

Search Result 220, Processing Time 0.03 seconds

The effect of impact directions and angels on erosion behavior of undirectionally oriented sillicon nitride (충돌 방향과 각도가 일방적으로 배향된 질화규소의 Erosion 거동에 미치는 영향)

  • Cho, Chang-Hee;Choi, Hyun-Joo;Lim, Dae-Soon;Jung, Jung-Sik;Park, Dong-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.88-95
    • /
    • 2001
  • Silicon nitride based ceramics reinforced with 3wt% Si$_{3}$N$_{4}$ whisker was prepared by tape casting to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens. A gas blast type erosion tester was used to examine the erosion behavior of the specimens with different impact directions and angles. The erosion rate increases with increasing impact angle. Erosion rate of the silicon nitride ceramics also depends on the grain orientations, The erosion rate was lowered when impaction direction was parallel to the grain orientation This result was explained by the crack deflection and bridging due to the grain orientation.

  • PDF

Densification of $Si_3N_4$ Cera,ocs by Two Step Gas Pressure Sintering (2단계 가스압 소결에 의한 질화규소의 치밀화)

  • 이상호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.659-664
    • /
    • 1998
  • Densification behavior of $Si_3N_4$ ceramics by two step gas pressure sintering was compared with pres-sureless sintering one step gas pressure sintering or hot isostatic pressing. While it was difficult to get the highly interlocked ${\beta}-Si_3N_4$ microstructure during the pressureless sintering due to decomposition above $1800^{\circ}C$ gas pressure sintering could solve this problem by increasing the densification temperature 2MPa of nitrogen pressure was enough to inhibit the decomposition up to $1890^{\circ}C$ and especially two step gas pres-sure sintering applying comparatively low pressure(2MPa) until the closed pore stage and then high pres-sure(10MPa) after pore closure could increase the hardness and the toughness.

  • PDF

Synthesis and Properties of CuNx Thin Film for Cu/Ceramics Bonding

  • Chwa, Sang-Ok;Kim, Keun-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.222-226
    • /
    • 1998
  • $Cu_3N$ film deposited on silicon oxide substrate by r.f. reactive sputtering technique. Synthesis and properties of copper nitride film were investigated for its possible application to Cu metallization as adhesive interlayer between copper and $SiO_2. Cu_3N$ film was synthesized at the substrate temperature ranging from $100^{\circ}C$ to $200^{\circ}C$ and at nitrogen gas ratio above $X_{N2}=0.4. Cu_3N, CuN_x$, and FGM-structured $Cu/CuN_x$ films prepared in this work passed Scotch-tape test and showed improved adhesion property to silicon oxide substrate compared with Cu film. Electrical resistivity of copper nitride film had a dependency on its lattice constant and was ranged from 10-7 to 10-1 $\Omega$cm. Copper nitride film was, however, unstable when it was annealed at the temperature above $400^{\circ}C$.

  • PDF

A Study on the Grinding Characteristics of the Quartz (Quartz의 연삭 특성에 관한 연구(I))

  • Im, Jong-Go;Ha, Sang-Baek;Choi, Hwan;Lee, Jong-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.870-873
    • /
    • 2000
  • This investigation reports the grinding characteristics of quartz. Grinding experiments were performed at various grinding conditions including wheel mesh, table speed and depth of cut. The grinding forces and specific grinding energies were measured to compare the grindability of quartz with those of structural ceramics such as A1$_2$O$_3$, SiC, Si$_3$N$_4$ and ZrO$_2$. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. The chip formation energy of quartz was about 6J/㎣, which is quite smaller than those of structural ceramics. Although plastic flows are occured in Si$_3$N$_4$ and ZrO$_2$, micro/macro cracks are occured in ground surface of quartz like in A1$_2$O$_3$ and SiC.

  • PDF

Effect of Microstructures and Sintering Additives on the Mechanical Properties of Si$_3$N$_4$ (질화규소의 기계적 특성에 미치는 미세구조 및 소결조제의 영향)

  • Park, Hye-Ryeon;Lee, O-Sang;Park, Hui-Dong;Lee, Jae-Do
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.330-336
    • /
    • 1992
  • Four distinctive hot pressed and heat treated S${i_3}{N_4}$ceramics, S${i_3}{N_4}$-8%${Y_2}{O_3}$, S${i_3}{N_4}$-6% ${Y_2}{O_3}$-2% $A{l_2}{O_3}$, S${i_3}{N_4}$-4% ${Y_2}{O_3}$-3% $A{l_2}{O_3}$, 그리고 S${i_3}{N_4}$-1% MgO-1% Si$O_2$(in wt%), were prepared and characterized by X-ray diffraction, scanning electron microscopy, image analysis and mechanical tests. The fracture toughness of S${i_3}{N_4}$-8% ${Y_2}{O_3}$specimens containing large elongated grains showed the highest value of about 9.8MPa$m^{1/2}$. Two out of four S${i_3}{N_4}$, ceramics(S${i_3}{N_4}$-6% ${Y_2}{O_3}$-2% $A{l_2}{O_3}$and S${i_3}{N_4}$-4% ${Y_2}{O_3}$-3% $A{l_2}{O_3}$) heat treated at 200 $0^{\circ}C$retained the fracture strength of over 900MPa and fracture toughness of over 8.0MPa$m^{1/2}$. Large ${\beta}$-S${i_3}{N_4}$grains having a diameter larger than 1${\mu}$m appeared to contribute to increase in fracture toughness.

  • PDF

The Effect of SiO2 on the Microstructure and Electrical Properties of BaTiO3 PTC Thermistor (BaTiO3 PTC 써미스터의 미세구조 및 전기적 특성에 대한 SiO2 영향)

  • Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • PTCR ceramics of $(Ba_{0.998}Sm_{0.002})TiO_3+0.001MnCO_3+xSiO_2$ (x=1, 2, 3, 4, 5, 6 mol%) were fabricated by solid state method. Disk samples of diameter 5 mm and thickness about 1mm were sintered at $1,290^{\circ}C$ for 2 h in reduced atmosphere of $5%H_2-95%N_2$ followed by re-oxidation at $600^{\circ}C$ for 30 min. in $20%O_2-80%N_2$.and their microstructures and electrical properties were investigated with SEM and Multimeter. The color of sintered samples was strongly dependent on $SiO_2$ content showing that the color of samples with $SiO_2$ of 1~2 mol% was gray but that of samples with $SiO_2$ of 4~6 mol% was changed from gray to blue, which seems to be related with the reduction of samples due to the oxygen vacancies created during the sintering in reduced atmosphere. $SiO_2$ content had a great influence on the microstructure and the electrical properties. With increasing $SiO_2$ content, the grain size of samples increased and the resistivity as well as the resistivity jump ($R_{285}/R_{min}$) decreased, which is considered to be attributed to the resistivity change at grain interior and grain boundary due to the fast mass transfer through $SiO_2$ liquide phase during the sintering. Samples with 2 mol% $SiO_2$ has the resistivity of $202{\Omega}cm$ and the resistivity jump of 3.28. It is expected that $SiO_2$ doped $BaTiO_3$ based PTC ceramics can be used for multilayered PTC thermistor due to the resistance to the sintering in reduced atmosphere.

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

A Study on The Characteristics of Ultra Precision Lapping of Machinable Ceramic($Si_3N_4$) by Free & Fixed abrasive (자유지립 및 고정지립을 적용한 머신어블 세라믹($Si_3N_4$)의 초정밀 래핑 가공 특성에 관한 연구)

  • 장진용;이은상;조명우;조원승;이재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.537-542
    • /
    • 2004
  • Machinble Ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. Lapping used diamond slurry and lapping by in-process electrolytic dressing is developed to solve this problem. On this paper, a comparative study of processing ability of lapping used diamond slurry and lapping by in-process electrolytic dressing.

  • PDF

Nanostructure Ceramics of Silicon Nitride Produced by Spark Plasma Sintering

  • Hojo, Junichi;Hotta, Mikinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.323-324
    • /
    • 2006
  • The nanostructure control of $Si_3N_4$ ceramics can be achieved by using fine starting powder and retardation of grain growth. The spark plasma sintering technique is useful to retard the grain growth by rapid heating. In the present work, the change of microstructure was investigated with emphasis on the particle size of starting powder, the amount of sintering additive and the heating schedule. The rapid heating by spark plasma sintering gave the fine microstructure consisting of equiaxed grains with the same size as starting particles. The spark plasma sintering of $Si_3N_4$ fine powder was effective to control the microstrucutre on nano-meter level.

  • PDF