• Title/Summary/Keyword: $SiO_2-TiO_2$-PDMS film

Search Result 2, Processing Time 0.019 seconds

Preparation and Characterization of Sol-Gel Derived $SiO_2-TiO_2$ -PDMS Composite Films

  • Hwang, Jin Myeong;Yeo, Chang Seon;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1366-1370
    • /
    • 2001
  • Thin films of the SiO2-TiO2-PDMS composite material have been prepared by the sol-gel dip coating method. Acid catalyzed solutions of tetraethoxy silane (TEOS) and polydimethyl siloxane (PDMS) mixed with titanium isopropoxide Ti(OiPr) were used as precursors. The optical and structural properties of the organically modified 70SiO2-30TiO2 composite films have been investigated with Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Spectroscopy (UV-Vis), Differential Thermal Analysis (DTA) and prism coupling technique. The films coated on the soda-lime-silicate glass exhibit 450-750 nm thickness, 1.56-1.68 refractive index and 88-94% transmittance depending on the experimental parameters such as amount of PDMS, thermal treatment and heating rate. The optical loss of prepared composite film was measured to be about 0.34 dB/cm.

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.