• Title/Summary/Keyword: $SiO_2/K_2CO_3$

Search Result 574, Processing Time 0.028 seconds

Inhibition of Pancreatic Lipase Activity and Adipocyte Differentiation in 3T3-L1 Cells Treated with Purple Corn Husk and Cob Extracts (자색옥수수 포엽과 속대 추출물의 리파아제 저해활성 및 3T3-L1 지방전구세포에서의 지방분화 억제효과)

  • Lee, Ki Yeon;Hong, Soo Young;Kim, Tae Hee;Kim, Jai Eun;Park, A-Reum;Noh, Hee Sun;Kim, Si Chang;Park, Jong Yeol;Ahn, Mun Seob;Jeong, Won Jin;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • Our review begins with the maize hybrid for grain, called 'Seakso 1,' which was developed in 2008 by the Gangwon Agricultural Research and Extension Services in Korea, and subsequently registered in 2011. In this study, we aimed to investigate the lipid metabolic enzyme activity and inhibitory effect on the adipocyte differentiation, in 3T3-L1 cells of the identified Seakso 1 corn husk and cob extracts (EHCS). We investigated the pancreatic lipase inhibitory effect and anti-adipogenic effect of EHCS.The lipid accumulation and adipocyte differentiation were measured by the procedure of Oil Red O staining, Real-time PCR and the Western blot analysis. The pancreatic lipase inhibitory activity of EHCS was measured at higher levels than those of the positive control (orlistat) at 100, 500, and $1,000{\mu}g/mL$. In particular, EHCS was noted as being significantly inhibited and including a measured adipocyte differentiation and lipid accumulation, when treated during the adipocyte differentiation process in 3T3-L1 cells. Based on the Oil Red O staining, EHCS inhibited lipid accumulation at 19.19%, 33.30% at $1000{\mu}g/mL$, $2000{\mu}g/mL$, respectively. The real-time PCR and Western blot analysis showed that EHCS significantly decreased in the mRNA expression and protein level of obesity-related factors, such as peroxisome-proliferatorsactivated-receptor-${\gamma}$ ($PPAR{\gamma}$) and CCAAT enhancer-binding-proteins ${\alpha}$ ($C/EBP{\alpha}$). This study potentially suggests that the Saekso 1 corn husk and cob extracts may improve lipid metabolism and reduce lipid accumulation.

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF

Effect of COY (Cooking Oil and Yolk mixture) and ACF (Air-circulation Fan) on Control of Powdery Mildew and Production of Organic Lettuce (난황유와 공기순환팬의 상추 흰가루병 방제효과 및 생산에 미치는 영향)

  • Jee, Hyeong-Jin;Ryu, Kyung-Yul;Park, Jong-Ho;Choi, Du-Hoe;Ryu, Gab-Hee;Ryu, Jae-Gee;Shen, Shun-Shan
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Powdery mildew of lettuce that is a newly reported disease became a threat to organic cultivation of lettuce in Korea since the disease caused by Podosphaera fusca resulted in a half of yield loss in heavily infected fields. To improve micro-environmental conditions around lettuce, ACF (air-circulation fan) was installed on inside roof of plastic house at 6 m intervals. The ACF increased 57% of lettuce yield and reduced 71.4% of lettuce seedling death. COY (cooking oil and yolk mixture) consisted of cooking oil 0.3% and egg yolk 0.08% reduced lettuce seedling death from 89.3% to 92.9% under the greenhouse. Seven-day interval spray of COY resulted in high control values of powdery mildew of lettuce ranging from 89.6% to 96.3%, which was comparable to a fungicide, Azoxystrobin. Lettuce yield was increased about two times compared to a non-treated conventional cultivation. Qualities of lettuce such as hardness and chlorophyll content were also improved by COY and ACF combination. Effect of COY on control of the disease was improved when $CaCO_3$ or $SiO_2$ 1,000 ppm was supplemented. Results indicated that the COY made of cooking oil such as canola emulsified with yolk was highly effective on control of powdery mildew of lettuce and suitable for organic agriculture, especially when combined with ACF.

Method for Supplementing Lecithin to Ginseng Extract (레시틴이 강화된 인삼 추출물 제조 방법)

  • Park, Soon-Hye;Kim, Il-Woong;Kim, Dong-Man;Kim, Si-Kwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1245-1250
    • /
    • 2006
  • This study was carried out to develop the method of preparing lecithin-fortified ginseng extract. Firstly, soybean lecithin was mixed with soybean oil (LCS) in varying ratio (2.5%, 5%, 10% and 20%). Then, one part volume of LCS was mixed with three parts volume of ginseng extract with 10% solid matter content and the mixture was vortexed vigorously. Finally, the mixture was spinned at the speed of 3,000 rpm for 30 minutes to separate oil and aqueous ginseng extract layer (AG). AG was then subjected to qualitative and quantitative analysis of phospholipids and ginsenosides. Fatty acid composition and crude fat content before and after LCS was determined. Stability of lecithin in ginseng extract was determined by analyzing phospholipid content in the one third upper and lower layer of the concentrated AG in Falcon tubes while storing the LCS treated concentrated AG in 4, 25 and 40oC for 6 months. Ratio of lecithin transferred to AG increased with the increase in lecithin content of soybean oil. There was no significant change in fatty acid composition and crude fat content, and ginsenoside content in the ginseng extract before and after LCS treatment. TLC and HPLC pattern of saponin fraction before and after treating the ginseng extract with LCS demonstrated no observable difference. There was no change in lecithin content in the upper and lower one third layer of ginseng extract in the tubes after storing the concentrated AG in 4, 25 and $40^{\circ}C$ for 6 months. Ginsenosides HPLC pattern was not changed when stored the LCS-treated ginseng extract in those conditions for six months, indicating satisfiable stability of the LCS-treated concentrated ginseng extract. From these results, it can be concluded that treatment of the ginseng extract with lecithin containing soybean oil is a labor effective method with satisfiable stability to fortify lecithins to ginseng extract.