• Title/Summary/Keyword: $SiO_2$ layer

Search Result 1,763, Processing Time 0.035 seconds

Strength toss of F-Fiber Obtained from Recycling FRP Ship in a Basic Solution (폐 FRP 선박에서 분리하여 얻은 F섬유의 염기성 용액에서의 강도저하)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.42-45
    • /
    • 2008
  • It has been reported that FRP (fiber reinforced plastic) can be recycled by separating into layers instead of crushing into powder. F-fiber obtained from roving layer separated from FRP, has bigger tensile strength than the bundle of glass fibers of which FRP was made (more than 90%). SEM image of F-fiber shows the presence of some resin. Under the proposition of usage of F-fiber in the concrete material, tensile strength is examined after soaking in a basic solution (NaOH+KOH). The reaction mechanism of strength loss may be considered as an attack of hydroxide ion ($OH^-$) on a chemical bond of Si-O-Si of glass fiber. The simulation graph of the strength loss data implies certain reaction mechanism. While in the early stage kinetically controlled reaction results in a fast drop of tensile strength, after 30 days dispersion rate of hydroxide ion plays a major role in strength loss. This result is similar to the one for the AR glass. An extrapolation of the graph would make an assumption about the lift time of F-fiber possible.

  • PDF

입자침전법을 이용한 광도전체 필름의 X선 반응 특성에 관한 연구

  • Choe, Chi-Won;Gang, Sang-Sik;Jo, Seong-Ho;Gwon, Cheol;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.176-176
    • /
    • 2007
  • Flat-panel direct conversion detectors used in compound substance of semiconductor are being studied for digital x-ray imaging. Recently, such detectors are deposited by physical vapor deposition(PVD) generally. But, most of materials (HgI2, PbI2, TlBr, PbO) deposited by PVD have shown difficult fabrication and instability for large area x-ray imaging. Consequently, in this paper, we propose applicable potentialities for screen printing method that is coated on a substrate easily. It is compared to electrical properties among semiconductors such as $HgI_2$, $PbI_2$, PbO, HgBrI, InI, and $TlPbI_3$ under investigation for direct conversion detectors. Each film detector consists of an ~25 to $35\;{\mu}m$ thick layer of semiconductor and was coated onto the substrate. Substrates of $2cm{\times}2cm$ have been used to evaluate performance of semiconductor radiation detectors. Dark current, sensitivity and physics properties were measured. Leakage current of $HgI_2$ as low as $9pA/mm^2$ at the operation bias voltage of ${\sim}1V/{\mu}m$ was observed. Such a value is not better than PVD process, but it is easy to be fabricated in high quality for large area x-ray Imaging. Our future efforts will concentrate on optimization of growth of film thickness that is coated onto a-Si TFT array.

  • PDF

Fabrication of MFISFET Compatible with CMOS Process Using $SrBi_2Ta_2O_9$(SBT) Materials

  • You, In-Kyu;Lee, Won-Jae;Yang, Il-Suk;Yu, Byoung-Gon;Cho, Kyoung-Ik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 2000
  • Metal-ferroelectric-insulator-semoiconductor field effect transistor (MFISFETs) were fabricated using CMOS processes. The Pt/SBT/NO combined layers were etched for forming a conformal gate by using Ti/Cr metal masks and a two step etching method, By the method, we were able to fabricate a small-sized gate with the dimension of $16/4{\mu}textrm{m}$ in the width/length of gate. It has been chosen the non-self aligned source and drain implantation process, We have deposited inter-layer dielectrics(ILD) by low pressure chemical vapor deposition(LPCVD) at $380^{circ}C$ after etching the gate structure and the threshold voltage of p-channel MFISFETs were about 1.0 and -2.1V, respectively. It was also observed that the current difference between the $I_{ON}$(on current) and $I_{OFF}$(off current) that is very important in sensing margin, is more that 100 times in $I_{D}-V_{G}$ hysteresis curve.

  • PDF

Spatially-resolved Photoluminescence Studies on Intermixing Effect of InGaAs Quantum Dot Structures Formed by AlAs Wet Oxidation and Thermal Annealing (AlAs 습식산화와 열처리로 인한 InGaAs 양자점 레이저 구조의 Intermixing효과에 관한 공간 분해 광학적 특성)

  • Hwang J.S.;Kwon B.J.;Kwack H.S.;Choi J.W.;Choi Y.H.;Cho N.K.;Cheon H.S.;Cho W.C.;Song J.D.;Choi W.J.;Lee J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • Optical characteristics of InGaAs quantum dot (QD) laser structures with an Al native oxide (AlOx) layer as a current-blocking layer were studied by means of photoluminescence (PL), PL excitation, and spatially-resolved micro-PL techniques. The InGaAs QD samples were first grown by molecular-beam epitaxy (MBE), and then prepared by wet oxidation and thermal annealing techniques. For the InGaAs QD structures treated by the wet oxidation and thermal annealing processes, a broad PL emission due to the intermixing effect of the AlOx layer was observed at PL emission energy higher than that of the non-intermixed region. We observed a dominant InGaAs QD emission at about 1.1 eV in the non-oxide AlAs region, while InGaAs QD-related emissions at about 1.16 eV and $1.18{\sim}1.20eV$ were observed for the AlOx and the SiNx regions, respectively. We conclude that the intermixing effect of the InGaAs QD region under an AlOx layer is stronger than that of the InGaAs QD region under a non-oxided AlAs layer.

A Simultaneous Improvement in $CO_2$ Flux and $CO_2/N_2$ Separation Factor of Sodium-type FAU Zeolite Membranes through 13X Zeolite Beads Embedding (13X 제올라이트 흡착제 충진에 의한 Na형 Faujasite 제올라이트 분리막의 $CO_2/N_2$ 선택도 및 $CO_2$ 투과도 동시 증가 현상)

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Moon, Jong-Ho;Lee, Chang-Ha
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.269-275
    • /
    • 2007
  • Sodium type faujasite(FAU) zeolite membranes with a thickness of 5${\mu}m$ and a Si/Al molar ratio of 1.5 were prepared by the secondary growth process. The $CO_2/N_2$ separation in the vacuum mode was investigated at $30^{\circ}C$ for an equimolar $CO_2-N_2$ mixed gas before and after embedding 13X zeolite beads in the permeate side. The embedded 13X zeolite beads improved both $CO_2$ permeance and $CO_2/N_2$ separation factor, simultaneously. The phenomenon was explained by an increment in the $CO_2$ desorption rate at the FAU zeolite/$\alpha-Al_2O_3$ phase boundary due to an enhanced $CO_2$ escaping through the pore channels of the $\alpha-Al_2O_3$ support layer. In the present paper, it will be emphasized that a hybridization of a membrane with an adsorbent can provide a key to break through the trade-off between permeance and separation factor, generally shown in a membrane separation.

GeTe Thin Film의 상 변화가 저항과 Carrier Concentration에 미치는 영향

  • Lee, Gang-Jun;Na, Hui-Do;Kim, Jong-Gi;Jeong, Jin-Hwan;Choe, Du-Jin;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.292-292
    • /
    • 2011
  • TFT (Thin Film Transistor)에서 공정을 단순화 시키고, 가격을 하락시키기 위해서는 Poly-Si을 대체할 물질이 필요하다. 이 연구에서는 Chalcogenide Material의 하나인 GeTe 박막을 이용하여 TFT Channel으로 사용 가능한 물질인지 알아보기 위하여 Post-Annealing을 한 뒤, 상 변화에 따른 박막의 저항 변화, Carrier Concentration (cm-3)과 Mobility (cm2V-1s-1)의 변화를 알아보았다. Sputtering을 이용하여 증착한 GeTe 100 nm Thin Film 위에 Sputtering을 이용하여 SiO2 5 nm를 Capping Layer로 증착한 후, Post-Annealing을 200$^{\circ}C$, 300$^{\circ}C$, 400$^{\circ}C$, 500$^{\circ}C$로 온도를 변화 시키며 진행하였고, 이로 인하여 GeTe Thin Film에 외부의 영향을 최소화 하였다. 먼저 GeTe Thin Film의 Sheet Resistance를 측정한 결과는 300$^{\circ}C$ 까지 낮은 Sheet Resistance의 거동을 보이며 반면, 400$^{\circ}C$ 이상이 되면 높은 Sheet Resistance의 거동을 보인다. Hall Measurement를 통해, Carrier Concentration과 Mobility를 알아보았다. Carrier Concentration은 온도가 증가하면 1E+19에서 1E+21 까지 증가하며, Mobility는 감소하는 경향을 보인다. 500$^{\circ}C$ Post-Annealed GeTe Thin Film에서는 Resistivity가 상당히 높아 4 Point Probe (Range : 1 mohm/sq~2 Mohm/sq)로 측정이 불가능하다. XRD로 GeTe Thin Film을 분석한 결과 as-grown, 200$^{\circ}C$, 300$^{\circ}C$에서는 Cubic의 결정 구조를 보이며, Sheet Resistance가 급격히 증가한 400$^{\circ}C$, 500$^{\circ}C$에서는 Rhombohedral의 결정구조를 보인다. GeTe Thin Film은 400$^{\circ}C$ 이상의 Post-Annealing 온도에서 cubic 구조에서 Rhombohedral 구조로 상 변화가 일어난다. 위 결과를 통해, 결정 구조의 변화가 GeTe Thin Film의 저항, Carrier Concentration과 Mobility에 밀접한 영향이 미치는 것을 확인하였다.

  • PDF

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

  • Lee, Honyoung;Jang, Haegyu;Lee, Hak-Seung;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.142.2-142.2
    • /
    • 2015
  • Plasma etch endpoint detection (EPD) of SiO2 and PR layer is demonstrated by plasma impedance monitoring in this work. Plasma etching process is the core process for making fine pattern devices in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a simple, non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist (PR), dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0 % oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD.

  • PDF

Quench Characteristics of Resistive Superconducting Fault Current Limiters (저항형 초전도 한류소자의 퀜치 특성)

  • Kim, Hye-Rim;Hyun, Ok-Bae;Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.214-217
    • /
    • 1999
  • We investigated the quench characteristics of meander line type resistive superconducting fault current limiters based on YBCO thin films grown on 2" diameter LaAlO$_3$ substrates. A gold layer was deposited onto the 0.4 ${\mu}$ m thick YBCO film to disperse the heat generated at hot spots, prior to patterning into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents of various amplitudes. The quench started at 10 A and was completed within 1 msec at the fault current of 65 A$_{peak}$. The dynamic quench characteristics were explained based on the heat conduction within the film and the heat transfer between the film and the surrounding liquid nitrogen. The heat transfer coefficient per unit area was estimated to be 3.0 W/cm$^2$K.

  • PDF

A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System (입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구)

  • Lee, J.K.;Kim, S.C.;Kim, H.J.;Lee, C.G.;Ju, C.H.;Lee, L.C.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF