• Title/Summary/Keyword: $SiN_X$

Search Result 942, Processing Time 0.033 seconds

A Study of Crystallization and Fracture Toughness of Glass Ceramics in the ZrO2·SiO2 Systems Prepared by the Sol-Gel Method (졸-겔법으로 제조한 ZrO2·SiO2계 결정화 유리의 결정화 및 파괴인성에 관한 연구)

  • Shin, Dae-Yong;Han, Sang-Mok;Kang, Wie-Soo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.247-256
    • /
    • 2000
  • Precursor gels with the composition of $xZrO_2{\cdot}(100-x)SiO_2$ systems (x=10, 20 and 30 mol%) were prepared by the sol-gel method. Kinetic parameters, such as activation energy, Avrami's exponent, n, and dimensionality crystal growth value, m, have been simultaneously calculated from the DTA data using Kissinger and Matusita equations. The crystallite size dependence on tetragonal to monoclinic transformation of $ZrO_2$ was investigated using XRD, in relation to the fracture toughness. The crystallization of tetragonal $ZrO_2$ occurred through 3-dimensional diffusion controlled growth(n=m=2) and the activation energy for crystallization was calculated using Kissinger and Matusita equations, as about $310{\sim}325{\pm}10kJ/mol$. The growth of $t-ZrO_2$, in proportion to the cube of radius, increased with increasing heating temperature and heat-treatment time. It was suggested that the diffusion of Zr4+ions by Ostwald ripening was rate-limiting process for the growth of $t-ZrO_2$ crystallite size. The fracture toughness of $xZrO_2{\cdot}(100-x)SiO_2$ systems glass ceramics increased with increasing crystallite size of $t-ZrO_2$. The fracture toughness of $30ZrO_2{\cdot}70SiO_2$ system glass ceramics heated at $1,100^{\circ}C$ for 5 h was $4.84Mpam^{1/2}$ at a critical crystaliite size of 40 nm.

  • PDF

0.25 μm AlGaN/GaN HEMT Devices and 9 GHz Power Amplifier (0.25 μm AlGaN/GaN HEMT 소자 및 9 GHz 대역 전력증폭기)

  • Kang, Dong-Min;Min, Byoung-Gue;Lee, Jong-Min;Yoon, Hyung-Sup;Kim, Sung-Il;Ahn, Ho-Kyun;Kim, Dong-Young;Kim, Hae-Cheon;Lim, Jong-Won;Nam, Eun-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.76-79
    • /
    • 2016
  • This paper describes the successful development and the performance of X-band 50 W pulsed power amplifier using a 50 W GaN-on-SiC high electron mobility transistor. The GaN HEMT with a gate length of $0.25{\mu}m$ and a total gate width of 12 mm were fabricated. The X-band pulsed power amplifier exhibited an output power of 50 W with a power gain of 6 dB in a frequency range of 9.2~9.5 GHz. It also shows a maximum output power density of 4.16 W/mm. This 50 W GaN HEMT and X-band 50 W pulsed power amplifier are suitable for the radar systems and related applications in X-band.

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Magnetic Properties of FeZrN/$SiO_2$ Soft Magnetic Multilayer Thin Films (FeZrN/$SiO_2$ 연자성 다층 박막의 자기적 성질)

  • Kim, Taek-Su;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.6 no.11
    • /
    • pp.1061-1066
    • /
    • 1996
  • RF magnetron reactive sputtering법으로 Fe75.5Zr8.3N16.2/SiO2(250$\AA$) 다층 박막을 FeZrN의 두께를 변화시키면서 제조하고, 제조된 박막을 진공 열처리하여 열처리 온도에 따른 포화자화, 보자력, 고주파에서의 투자율 그리고 열적 안정성을 조사하였다. Fe75.5Zr8.3N16.2/SiO2(250$\AA$) 다층박막은 FeZrN의 두께가 800$\AA$이상일 때 좋은 연자성을 나타내었다. Fe75.5Zr8.3N16.2/SiO2(250$\AA$)다층 박막을 45$0^{\circ}C$로 열처리 했을 때 포화자속밀도(1.08 T), 보자력 0.41 Oe, 1 MHz에서의 실효 투자율은 3000이상의 연자성을 나타내었다. 그 이유는 X-선 회절 분석 결과 열처리에 의해서 ZrN 미결정이 석출하여 $\alpha$-Fe 결정 성장이 억제되어 우수한 연자기적 성질이 나타난다고 판단된다. 이때 $\alpha$-Fe 입자 크기는 40-50$\AA$, ZrN의 입자 크기는 10-15$\AA$이다. 그리고 실효 투자율의 주파수 의존성에서 단층막에서는 5 MHz 이상에서 실효 투자율이 급격히 감소하는 경향을 보였으나, 다층막에서는 40MHz까지 실효 투자율이 1600이 되어 고주파에서의 연자성이 개선되었다.

  • PDF

Wear properties of (Ti$_{1-x}$Cr$_{x}$)N coatings deposited by ion-plating method (이온 플레이팅법으로 제조한 (Ti$_{1-x}$Cr$_{x}$)N 박막의 마모특성에 관한 연구)

  • 이광희;박찬홍;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.125-134
    • /
    • 2001
  • ($Ti_{1-x}$ $Cr_{x}$ )N coatings were deposited by an ion-plating method in a reactor with two separate metal sources, Ti and Cr. Ti was evaporated using an electron beam, while Cr evaporation was carried out by resistant heating. The Ti and Cr concentrations in the coatings were controlled by the Ti and Cr evaporation ratio. The coating hardness increased with increasing the Cr content(x) and showed a maximum value of 6,000 HK at around x=0.8. The critical load of the coatings, measured by the scratch test, was around 30 N. The wear resistance properties of the ($Ti_{1-x}$$Cr_{ x}$)N coatings were evaluated using a CSEM pin-on-disk type tribometer. A Cr-steel ball as well as a SiC ball, which had hardness values of 590 HK and 2,600 HK respectively, were used as the pin. After the wear test, the surface morphology, roughness and the concentration of the coatings were investigated, with the main focus being on the effect of wear debris and the transferred layer on the wear behavior.

  • PDF

Homogeneous Mixing of Si3N4 with Sintering Additives by Coprecipitation Method (질화규소의 소결첨가제의 공침법에 의한 균일혼합)

  • 김지순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.829-837
    • /
    • 1993
  • Chemically and geometrically homogeneous mixing of Si3N4 powders with sintering additives(YAG, 3Y2O3$.$5Al2O3) was attempted via coprecipitation method. X-ray dot maps for the additive elements(Al and Y) showed that the additives are evenly distributed in the powder mixture prepared by coprecipitation method(CP). TEM observation of the coprecipittion-treated Si3N4 powders revealed that they are covered with extremely fine crystallites of additive. The shift in isoelectric point(IEP) of Si3N4 powders from pH 6.7 to pH 7.9 after coprecipitation mixing gave another evidence for coating of Si3N4 powders with YAG additives. SIMS analysis for composition on the surface and in the matrix of mixed powders showed that the YAG additives are highly enriched on the surface of coprecipitation-treated Si3N4 powders. Especially when a small amount of additive was used, the effect of homogeneous additive distribution on densification was preceptible: After pressureless-sintering of powder compacts containing 5 mol% YAG at 1800$^{\circ}C$ for 0.5h, a sintered density of 96.5% theoretical was obtained from the specimens prepared bycoprecipitation in comparison with 93.8% from the mechanically-mixed one.

  • PDF

The Influence of AlN Buffer Layer Thickness on the Growth of GaN on a Si(111) Substrate with an Ultrathin Al Layer

  • Kwon, Hae-Yong;Moon, Jin-Young;Bae, Min-Kun;Yi, Sam-Nyung;Shin, Dae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.461-467
    • /
    • 2008
  • It was studied the effect of a pre-deposited ultrathin Al layer as part of a buffer layer for the growth of GaN. AlN buffer layers were deposited on a Si(111) substrate using an RF sputtering technique, followed by GaN using hydride vapor phase epitaxy (HVPE). Several atomic layers of Al were deposited prior to AlN sputtering and the samples were compared with the others grown without pre-deposition of Al. And it was also studied the influence of AlN buffer layer thickness on the growth of GaN. The peak wavelength of the photoluminescence (PL) was varied with increasing the thickness of the GaN and AlN layers. The optimum thickness of AlN on a Si(111) substrate with an ultrathin Al layer was about $260{\AA}$. Scanning electron microscope (SEM) images showed coalescent surface morphology and X-ray diffraction (XRD) showed a strongly oriented GaN(0002) peak.

Comparison of Passivation Property on Hydrogenated Silicon Nitrides whose Antireflection Properties are Identical (반사방지 특성을 통일시킨 실리콘 질화막 간의 패시베이션 특성 비교)

  • Kim, Jae Eun;Lee, Kyung Dong;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Silicon nitride ($SiN_x:H$) films made by plasma enhanced chemical vapor deposition (PECVD) are generally used as antireflection layers and passivation layers on solar cells. In this study, we investigated the properties of silicon nitride ($SiN_x:H$) films made by PECVD. The passivation properties of $SiN_x:H$ are focused on by making the antireflection properties identical. To make equivalent optical properties of silicon nitride films, the refractive index and thickness of the films are fixed at 2.0 and 90 nm, respectively. This limit makes it easier to evaluate silicon nitride film as a passivation layer in realistic application situations. Next, the effects of the mixture ratio of the process gases with silane ($SiH_4$) and ammonia ($NH_3$) on the passivation qualities of silicon nitride film are evaluated. The absorption coefficient of each film was evaluated by spectrometric ellipsometry, the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained using a UV-visible spectrophotometer. The interface properties were determined by capacitance-voltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD). In hydrogen passivation, gas ratios of 1:1 and 1:3 show the best surface passivation property among the samples.

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

Characteristics of in-situ doped polycrystalline 3C-SiCthin films for M/NEMS applications (In-situ 도핑된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.325-328
    • /
    • 2008
  • This paper describes the electrical properties of poly (polycrystalline) 3C-SiC thin films with different nitrogen doping concentrations. In-situ doped poly 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and $0{\sim}100$ sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in poly 3C-SiC thin films grown on $SiO_2/Si$ substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of poly 3C-SiC thin films decreased from $8.35{\Omega}{\cdot}cm$ with $N_2$ of 0 sccm to $0.014{\Omega}{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819{\times}10^{17}$ to $2.2994{\times}10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to $29.299cm^2/V{\cdot}S$, respectively.