• Title/Summary/Keyword: $SiN_{x}$

Search Result 944, Processing Time 0.032 seconds

Silicon thin film and p-n junction diode made by $CO_2$ laser-induced CVD method ($CO_2$ Laser-induced CVD법에 의한 Silicon박막 및 p-n 접합 Silicon제작)

  • Choi, H.K.;Jeong, K.;Kim, U.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.662-666
    • /
    • 1989
  • Pure mono Silane(Purity: 99.99%) was used as a thin film source and [$SiH_4$ + $H_2$ (5%)] + [$PH_3$ + $H_2$(0.05%)] mixed dilute gas was used for p-n junction diode. The substrate was P-type silicon wafer (p=$3{\Omega}$ cm) with the direction (100). The crystalline qualities of deposited thin film were investigated by the X-ray diffraction, RHEED and TED patterns and the voltampere characteristics of p-n junction diode was identified by I-V curve.

  • PDF

Preparation of ZnO Thin Films Using Zn/O-containing Single Precursorthrough MOCVD Method

  • Park, Jong-Pil;Kim, Sin-Kyu;Park, Jae-Young;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.114-118
    • /
    • 2009
  • A new Zn/O single source precursor, TMEDA-Zn$(eacac)_2$, has been synthesized by using N, N, N’, N’-tetramethylethylendiamine (TMEDA), sodium ethyl-acetoacetate, and $ZnCl_2$. From this organometallic precursor, ZnO thin films have been successfully grown on Si (100) substrates through the metal organic chemical vapor deposition (MOCVD) method at relatively mild conditions in the temperature range of 390~430 ${^{\circ}C}$. The synthesized ZnO films have been found to possess average grain sizes of about 70 nm with an orientation along the c-axis. The precursor and ZnO films are characterized through infrared spectroscopy, nuclear magnetic resonance spectroscopy, EI-FAB-spectroscopy, elemental analyses, thermal analysis, X-ray diffraction, and field emission scanning electron microscopic analyses.

High-Voltage GaN Schottky Barrier Diode on Si Substrate Using Thermal Oxidation (열 산화공정을 이용하여 제작된 고전압 GaN 쇼트키 장벽 다이오드)

  • Ha, Min-Woo;Roh, Cheong-Hyun;Choi, Hong-Goo;Song, Hong-Joo;Lee, Jun-Ho;Kim, Young-Shil;Han, Min-Koo;Hahn, Cheol-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1418-1419
    • /
    • 2011
  • 차세대 전력 반도체인 고전압 GaN 쇼트키 장벽 다이오드의 역방향 특성을 개선하기 위해서 열 산화공정이 제안되었다. AlGaN/GaN 에피탁시 위에 쇼트키 장벽 다이오드 구조가 제작되었으며, 쇼트키 컨택은 증착 후 $450^{\circ}C$에서 산화되었다. 열 산화공정이 메사 측벽의 AlGaN 및 GaN 표면에 $AlO_x$$GaO_x$를 형성하여 표면으로 흐르는 누설전류를 억제한다. 표면 및 GaN 버퍼를 통한 누설전류는 열 산화 공정 이후 100 ${\mu}m$-너비당 51.3 nA에서 24.9 pA로 1/2000 배 수준으로 감소하였다. 표면 산화물 형성으로 인하여 생성된 Ga-vacancy와 Al-vacancy는 acceptor로 동작하여 surface band bending을 증가시켜 쇼트키 장벽 높이를 증가시킨다. 애노드-캐소드 간격이 5 ${\mu}m$인 제작된 소자는 0.99 eV의 높은 쇼트키 장벽 높이를 획득하여, -100 V에서 0.002 A/$cm^2$의 낮은 누설전류를 확보하였다. 애노드-캐소드 간격이 5에서 10, 20, 50 ${\mu}m$로 증가되면 소자의 항복전압은 348 V에서 396, 606, 941 V로 증가되었다. 열 산화공정은 전력용 GaN 전자소자의 누설전류감소와 항복전압 증가를 위한 후처리 공정으로 적합하다.

  • PDF

A Study on Electrical Conduction of As-Te-Si-Ge Amorphous Semiconductor (As-Te-Si-Ge 유리질 반도체의 전기전도에 관한 연구)

  • Park, Chang-Yeub;Wang, Jin-Seok;Jeong, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.2
    • /
    • pp.18-23
    • /
    • 1975
  • The dc conductivity, ac conductivity and switching effect of As.Te-Si.Ge have beon investigated. The dc conductivity ranged from $3{\times}10^{-7}{\Omega}^{-1}cm^{-1}$ to $1.5{\times}10^{-8}{\Omega}^{-1}cm^{-1}$ at room temperature and was found to be expressed by ${\sigma}$ = ${\sigma}_0$exp(-${\Delta}$E/kT) below the phase transition temperature Tg. The ac conductivity was much higher than dc conductivity and this result is consistent to experimental formula ${\sigma}$(w)=${\sigma}_0+Aw^n$. In the temperature range of 298$^{\circ}K$ ~ $473^{\circ}K$ the ac conductivity was independent of temperature at 200KHs. At lower frequencies the ac conductivity increased strong1y with temperature. Also, it has been found that all samples showed a threshold switching, but not a memory switching.

  • PDF

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

Characterization of Nitrided $HfO_2(HfO_xN_y)$ for Gate Dielectric Application using Plasma (게이트 유전체 적용을 위한 플라즈마를 이용해 질화된 $HfO_2$ 박막의 특성 평가)

  • Kim,, Jeon-Ho;Choi, Kyu-Jeong;Yoon, Soon-Gil;Lee, Won-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.11-14
    • /
    • 2003
  • [ $HfO_2$ ] thin films were deposited at $300^{\circ}C$ on p-type Si (100) substrates using $HfO_2(HfO_xN_y)$ as the precursor by plasma-enhanced chemical vapor deposition and were annealed at $300^{\circ}C$ in nitrogen plasma ambient. Compared with $HfO_2$, nitrogen plasma annealed $HfO_2$ show good chemical stability, higher crystallization temperature, lower leakage current and thermal stability. Leakage current density of nitrogen plasma annealed $HfO_2$ is approximately one order of magnitude lower than that of $HfO_2$ for the same EOT. The improvement in electrical characteristics of nitrogen plasma annealed $HfO_2$ can be explained by the better thermal stability due to nitrogen incorporation.

  • PDF

Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering

  • Vishwakarma, Avinash;Bathula, Sivaiah;Chauhan, Nagendra S.;Bhardwaj, Ruchi;Gahtori, Bhasker;Srivastava, Avanish K.;Dhar, Ajay
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1540-1545
    • /
    • 2018
  • SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ~ 1.1 at $900^{\circ}C$ in ntype $Si_{80}Ge_{20}$ nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ${\sim}3.4{\times}10^7K/s$, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ~7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ${\sim}2.1Wm^{-1}K^{-1}$, which corresponds to ~50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

The Effects of 7 Fertilizers on the Growth and Nutrient Concentrations of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla Seedlings (7가지 시비처리가 물푸레나무, 들메나무, 잣나무, 전나무 묘목의 생장 및 양분농도에 미치는 영향)

  • Han, Si Ho;Byun, Jae Kyung;Cho, Min Seok;An, Ji Young;Park, Gwan Soo;Kim, Se Bin;Park, Byung Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • Fertilization is required to keep the balance of tissue nutrients and to produce high quality seedlings at the permanent nursery. This study was conducted to verify the optimum fertilization method for Fraxinus rhynchophylla, F. mandshurica, Pinus koraiensis, and Abies holophylla seedlings with vector diagnosis method. Seven treatments include nitrogen (N, $13.8g{\cdot}m^{-2}$), phosphorus (P, $6.1g{\cdot}m^{-2}$), potassium ($7.5g{\cdot}m^{-2}$) fertilization and 1x (N $6.9g{\cdot}m^{-2}$, P $3.05g{\cdot}m^{-2}$, K $3.65g{\cdot}m^{-2}$), 2x (twice of 1x), 4x (four times of 1x) fertilization and no fertilization. Soil pH decreased as fertilization increased. Nitrogen and NPK fertilization decreased exchangeable $Ca^{2+}$ and $Mg^{2+}$ concentrations. Height and root collar diameter of F. rhynchophylla and F. mandshurica significantly increased with N and NPK fertilization, but those of P. koraiensis and A. holophylla did not. The biomass of F. rhynchophylla and F. mandshurica was about twice higher at NPK fertilization compared to the control. The responses of vector diagnosis were different by tree species and fertilization treatment: F. rhynchophylla was in the status of N "dilution", which means the N concentration decreases with N content. Phosphorus and K were "sufficiency" state with 4x fertilization. F. mandshurica showed "retranslocation" as N content decreased without change of dry weight at N, P, K fertilization, but "dilution" state at NPK fertilization. This result suggested that optimal fertilization was required for F. rhynchophylla and F. mandshurica in seedling production stage, but was not essential for P. koraiensis and A. holophylla.

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.