• Title/Summary/Keyword: $Schr{\ddot{o}}dinger$-Poisson system

Search Result 3, Processing Time 0.02 seconds

MULTIPLICITY RESULTS FOR NONLINEAR SCHRÖDINGER-POISSON SYSTEMS WITH SUBCRITICAL OR CRITICAL GROWTH

  • Guo, Shangjiang;Liu, Zhisu
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.247-262
    • /
    • 2016
  • In this paper, we consider the following $Schr{\ddot{o}}dinger$-Poisson system: $$\{\begin{array}{lll}-{\Delta}u+u+{\lambda}{\phi}u={\mu}f(u)+{\mid}u{\mid}^{p-2}u,\;\text{ in }{\Omega},\\-{\Delta}{\phi}=u^2,\;\text{ in }{\Omega},\\{\phi}=u=0,\;\text{ on }{\partial}{\Omega},\end{array}$$ where ${\Omega}$ is a smooth and bounded domain in $\mathbb{R}^3$, $p{\in}(1,6]$, ${\lambda}$, ${\mu}$ are two parameters and $f:\mathbb{R}{\rightarrow}\mathbb{R}$ is a continuous function. Using some critical point theorems and truncation technique, we obtain three multiplicity results for such a problem with subcritical or critical growth.

THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS WITH INFINITELY MANY SOLUTIONS

  • Jin, Tiankun;Yang, Zhipeng
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.489-506
    • /
    • 2020
  • In this paper, we study the existence of infinitely many large energy solutions for the supercubic fractional Schrödinger-Poisson systems. We consider different superlinear growth assumptions on the non-linearity, starting from the well-know Ambrosetti-Rabinowitz type condition. We obtain three different existence results in this setting by using the Fountain Theorem, all these results extend some results for semelinear Schrödinger-Poisson systems to the nonlocal fractional setting.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

  • Che, Guofeng;Chen, Haibo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1551-1571
    • /
    • 2020
  • This paper is concerned with the following Kirchhoff-Schrödinger-Poisson system $$\begin{cases} -(a+b{\displaystyle\smashmargin{2}\int\nolimits_{\mathbb{R}^3}}{\mid}{\nabla}u{\mid}^2dx){\Delta}u+V(x)u+{\mu}{\phi}u={\lambda}f(x){\mid}u{\mid}^{p-2}u+g(x){\mid}u{\mid}^{p-2}u,&{\text{ in }}{\mathbb{R}}^3,\\-{\Delta}{\phi}={\mu}{\mid}u{\mid}^2,&{\text{ in }}{\mathbb{R}}^3, \end{cases}$$ where a > 0, b, µ ≥ 0, p ∈ (1, 2), q ∈ [4, 6) and λ > 0 is a parameter. Under some suitable assumptions on V (x), f(x) and g(x), we prove that the above system has at least two different nontrivial solutions via the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Some recent results from the literature are improved and extended.