1 |
J. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81 (1951), 385-390.
DOI
|
2 |
M. Struwe, Variational Methods, Application to Nonlinear Partial Differential Equation and Hamiltonian Syatem, Springer-Verlag, 2007.
|
3 |
J. Sun, Infinitely many solutions for a class of sublinear Schrodinger-Maxwell equations, J. Math. Anal. Appl. 390 (2012), no. 2, 514-522.
DOI
|
4 |
J. Sun, H. Chen, and J. Nieto, On ground state solutions for some non-autonomous Schrodinger-Poisson systems, J. Differential Equations 252 (2012), no. 5, 3365-3380.
DOI
|
5 |
Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrodinger-Poisson system in , Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 809-816.
DOI
|
6 |
L. Zhao and F. Zhao, On the existence of solutions for the Schroinger-Poisson equations, J. Math. Anal. Appl. 346 (2008), no. 1, 155-169.
DOI
|
7 |
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrodinger-Poisson problem, Commun. Contemp. Math. 10 (2008), no. 3, 391-404.
DOI
|
8 |
G. Anello, A multiplicity theorem for critical points of functionals on reflexive Banach spaces, Arch. Math. 82 (2004), 172-179.
DOI
|
9 |
J. Azorero and I. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), no. 2, 877-895.
DOI
|
10 |
A. Azzollini, P. d'Avenia, and V. Luisi, Generalized Schrodinger-Poisson type systems, Commun. Pure Appl. Anal. 12 (2013), no. 2, 867-879.
DOI
|
11 |
A. Azzollini and A. Pomponio, Ground state solutions for nonlinear Schrodinger-Maxwell equations, J. Math. Anal. Appl. 345 (2008), no. 1, 90-108.
DOI
|
12 |
T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schroodinger equation, SIAM J. Math. Anal. 37 (2005), 321-342.
DOI
|
13 |
P. D'Avenia, Non-radially symmetric solutions of nonlinear Schrodinger equation coupled with Maxwell equations, Adv. Nonlinear Stud. 2 (2002), no. 2, 177-192.
DOI
|
14 |
P. D'Avenia, A. Pomponioa, and G. Vaira, Infinitely many positive solutions for a Schrodinger-Poisson system, Nonlinear Anal. 74 (2011), no. 16, 5705-5721.
DOI
|
15 |
G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrodinger-Poisson systems, J. Differential Equations 248 (2010), no. 3, 521-543.
DOI
|
16 |
V. Benci and D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283-293.
DOI
|
17 |
D. Bleecker, Gauge Theory and Variational Principles, Dover Publications, 2005.
|
18 |
H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64.
DOI
|
19 |
G. Coclite, A multiplicity result for the nonlinear Schrodinger-Maxwell equations, Commun. Appl. Anal. 7 (2003), no. 2-3, 417-423.
|
20 |
L. Evans, Partial Differential Equations, AMS, Providence, RI, 1998.
|
21 |
I. Ianni and G. Vaira, On concentration of positive bound states for the Schrodinger-Poisson problem with potentials, Adv. Nonlinear Stud. 8 (2008), no. 3, 573-595.
DOI
|
22 |
M. Kranolseskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.
|
23 |
P. Lions, The concentration compactness principle in the calculus of variations: The locally compact case. Parts 1, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 2, 109-145
DOI
|
24 |
P. Lions, The concentration compactness principle in the calculus of variations: Thelocally compact case. Parts 2, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 4, 223-283.
DOI
|
25 |
Z. Liu and S. Guo, On ground state solutions for the Schrodinger-Poisson equations with critical growth, J. Math. Anal. Appl. 412 (2014), no. 1, 435-448.
DOI
|
26 |
P. Pucci and J. Serrin, A Mountain Pass theorem, J. Differential Equations 60 (1985), no. 1, 142-149.
DOI
|
27 |
Z. Liu, S. Guo, and Y. Fang, Multiple semiclassical states for coupled Schroinger-Poisson equations with critical exponential growth, J. Math. Phys. 56 (2015), no. 4, 041505, 22 pp.
|
28 |
Z. Liu, S. Guo, and Z. Zhang, Existence and multiplicity of solutions for a class of sublinear Schrodinger-Maxwell equations, Taiwanese J. Math. 17 (2013), no. 3, 857-872.
DOI
|
29 |
L. Pisani and G. Siciliano, Note on a Schrodinger-Poisson system in a bounded domain, Appl. Math. Lett. 21 (2008), no. 5, 521-528.
DOI
|
30 |
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Reg. Conf. Ser. in Math. vol. 65, Amer. Math. Soc. Providence, RI, 1986.
|
31 |
D. Ruiz, The Schrodinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), no. 2, 655-674.
DOI
|
32 |
D. Ruiz and G. Siciliano, A note on the Schrodinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud. 8 (2008), no. 1, 179-190.
DOI
|
33 |
A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems, in: Proceedings of the Second World Congress of Nonlinear Analysis, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 4849-4857.
|
34 |
M. Schechter and K. Tintarev, Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential Integral Equations 3 (1990), no. 5, 889-899.
|
35 |
G. Siciliano, Multiple positive solutions for a Schrodinger-Poisson-Slater system, J. Math. Anal. Appl. 365 (2010), no. 1, 288-299.
DOI
|