• 제목/요약/키워드: $S_N'$ Reactions

검색결과 380건 처리시간 0.021초

Nucleophilic Substitution Reactions of Benzyl Benzenesulfonates with Benzylamine in Acetonitrile and Methanol

  • Ikchoon Lee;Chul Hyun Kang;Pyoung Sam Park;Hai Whang Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.282-286
    • /
    • 1991
  • Kinetic studies of the reactions of benzyl benzenesulfonates with benzylamines in methanol and acetonitrile have been carried out. The reaction was found to proceed by a dissociative $S_N2$ in MeCN but by an associative $S_N2$ mechanism in MeOH. The transition state was rather loose in MeCN whereas it was tight in MeOH, in contrast to a tighter TS in MeCN for the corresponding reactions with aniline. The reaction of benzylamine in MeOH was characteristic of the highly solvated nucleophile, benzylamine, compared to the normal reaction in MeCN.

Exploratory Study of Photocyclization Reactions of N-(Trimethylsilylmethylthioalkyl)phthalimides

  • Ung Chan Yoon;Sang Jin Lee;Kyung Ja Lee;Sung Ju Cho;Chan Woo Lee;Patrick S. Mariano
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권2호
    • /
    • pp.154-161
    • /
    • 1994
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethylthioalkyl)phthalimides (alkyl=ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl). Photocyclizations occur in methanol in modest to high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from sulfur in the ${\alpha}$-silylmethylthioalkyl groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate ${\alpha}$ -silylmethylthio cation radicals and cyclization by radical coupling is proposed. In contrast, photoreactions of N-(trimethylsilylmethylthioalkyl)phthalimides in acetone follow different reaction routes to produce another cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon ${\alpha}$ to silicon and sulfur atoms via triplet carbonyl hydrogen abstraction pathway. The normal singlet SET pathway dominates this triplet process for photoreactions of these substances in methanol while the triplet process dominates the singlet SET pathway for those in acetone. The efficient and regioselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

Photocyclization Reactions of N-(Trimethylsilylmethoxyalkyl)Phthalimides. Efficient and Regioselective Route to Heterocycles

  • Yoon Ung Chan;Oh Ju Hee;Lee, Sang Jin;Kim, Dong Uk;Lee, Jong Gun;Kang Kyung-Tae;Mariano Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권2호
    • /
    • pp.166-172
    • /
    • 1992
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethoxyalkyl)phthalimides(alkyl=E thyl, n-propyl, n-butyl, n-pentyl, and n-octyl). Photocyclizations occur in methanol in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from oxygen in the $\alpha-silylmethoxy$ groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate $\alpha-silylmethoxy$ cation radicals and cyclization by radical coupling are proposed. In contrast, photoreaction of N-(trimethylsilylmethoxyethyl) phthalimide in acetone follows different reaction routes to produce two cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon $\alpha$ to silicon and oxygen atoms via triplet carbonyl hydrogen abstraction triplet carbonyl silyl group abstraction pathways. The normal singlet SET pathway dominates these triplet processes for photoreaction of this substance in methanol. The efficient and regioselective cyclization reactions observed for photolysis in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

Kinetics and Mechanism of the Aminolysis of Aryl N-Benzyl Thiocarbamates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.137-140
    • /
    • 2011
  • The aminolysis reactions of phenyl N-benzyl thiocarbamate with benzylamines in acetonitrile at $50.0^{\circ}C$ are investigated. The reactions are first order in both the amine and the substrate. Under amine excess, pseudo-first coefficient ($k_{obs}$) are obtained, plot of $k_{obs}$ vs free amine concentration are linear. The signs of ${\rho}_{XZ}$ (< 0) are consistent with concerted mechanism. Moreover, the variations of $\rho_X$ and $\rho_Z$ with respect to the sustituent in the substrate and large ${\rho}_{XZ}$ value indicate that the reactions proceed concerted mechanism. The normal kinetic isotope effects ($k_H/k_D$ = 1.3 ~ 1.5) involving deuterated benzylamine nucleophiles suggest a hydrogen-bonded, four-centered-type transition state. The activation parameters, ${\Delta}H^\ddagger$ and ${\Delta}S^\ddagger$, are consistent with this transition state structure.

MNDO Studies on the Gas-Phase S$_N$2 Reaction$^*$

  • 이익춘;이본수;송창현
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권4호
    • /
    • pp.191-196
    • /
    • 1985
  • The MNDO was found to be the most reliable semi-empirical SCF-MO method for the studies of $S_N2$ reactions involving anion and neutral molecule. The results of our MNDO calculations on the $S_N2$ reactions of $CH_3X$ + $Y^-$$CH_3Y$ + X- where X = H, F, Cl, CN, $CH_3$, and Y = F, $CH_3$ showed that the order of the leaving group ability is the reverse of the order of proton affinities. It was also found that there is no symbiosis involved in the SN2 transition state and the departure of the leaving group is relatively late in contrast to the early bond formation of the nucleophile. The Marcus equation was found to apply to the MNDO barriers and energy changes.

Pyridinolysis of 2,4-Dinitrophenyl Phenyl Thionocarbonate: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

  • Son, Min-Ji;Kim, Song-I;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1165-1169
    • /
    • 2011
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of 2,4-dinitrophenyl phenyl thionocarbonate 4 with a series of Z-substituted pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reactions of 4 exhibits downward curvature (i.e., ${\beta}_1$ = 0.21 and ${\beta}_2$ = 1.04), indicating that the reactions proceed through a stepwise mechanism with a change in rate-determining step. It has been found that 4 is less reactive than its oxygen analogue, 2,4-dinitrophenyl phenyl carbonate 3, although the thionocarbonate is expected to be more electrophilic than its oxygen analogue. The $pK_a$ at the center of the Br${\o}$nsted curvature, defined as $pK_a^o$, has been analyzed to be 6.6 for the reactions of 4 and 8.5 for those of 3. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio has revealed that the reactions of 4 result in smaller $k_1$ values but larger $k_2/k_{-1}$ ratios than the corresponding reactions of 3. The larger $k_2/k_{-1}$ ratios have been concluded to be responsible for the smaller $pK_a^o$ found for the reactions of 4.

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

MODELLING OF PYROLYSIS PROCESSES OF POLYACRYLONITRILE

  • Lipanov, A.M.;Kodolov, V.I.;Ovchinnikova, L.N.;Savinsky, S.S.;Khokhriakov, N.V.;Sarakula, V.L.
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.112-119
    • /
    • 1997
  • The modelling of carbon substances obtaining, for instance, carbon fibers which have high fire resistance, has been realized on the example of the polyacrylonitrile pyrolysis modelling. The pyrolysis is considered as a double step process when the formation of a liquid phase and the oxidation of substance are excluded. Three main reactions are considered: a) with the evolution of ammonia; b) with the evolution of hydrogen cyanide; c) with the evolution of hydrogen. Reactions b) and c) are sequential, and a) and b) are parallel. The problem is formulated as one-dimensional. The equations of energy, masses or concentrations, porosity and thermal conductivity are proposed. The mathematical model of the carbonization process is designed using tile kinetic characteristics of the above reactions and the thermodynamic parameters of reagents and products in these reactions. The equations received are calculated by Runge-Cutta method and by Adams method of the fourth order accuracy.

  • PDF

SEPARATION OF GAMMA-RAYS PRODUCTION FROM $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ REACTIONS USING DOPPLER SHIFT EFFECT

  • Kim, Y.K.;Ha, J.H.;Youn, M.;Han, S.H.;Chung, C.E.;Moon, B.S.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.287-290
    • /
    • 2001
  • The 9.17MeV gamma-rays from the $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ reactions were measured. The incident 9.17MeV gamma-ray was produced from the $^{13}C(p,\;{\gamma})^{14}N$ reaction at Ep=1.75MeV resonance. The 1.75MeV proton beam was accelerated using the 3MV SNU-AMS Tandetron and 1.7MV KIGAM Tandem accelerators. The enriched 13C target was $121{\mu}g/cm^2$ self-supporting foil, and we used liquid nitrogen as a resonant absorption target. We used a HP-Ge detector with 30% efficiency and less 2keV energy resolution. We developed new method to detect the scattered 9.17MeV gamma-ray from the nitrogen target by using the energy difference between the Doppler shifted gamma-ray from the $^{13}C(p,\;{\gamma})^{14}N$ reaction and the resonant absorbed and rescattered gamma-ray from the $^{14}N({\gamma},\;{\gamma})^{14}N$ reaction.

  • PDF

Kinetic Studies on Bromine-Exchange Reactions of Antimony Tribromide with $\alpha$-Phenyl-n-butyl and $\alpha$-Phenyl-i-butyl Bromides in Nitrobenzene$^\dag$

  • Rhyu, Sok-Hwan;Choi, Sang-Up
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권5호
    • /
    • pp.408-414
    • /
    • 1987
  • The rate of bromine-exchange reaction between antimony tribromide and ${\alpha}-phenyl-n-butyl$ bromide in nitrobenzene has been determined, using antimony tribromide labelled with Br-82. The results indicate that the exchange reaction follows the first-order kinetics with respect to the organic bromide, and either the second- or first-order kinetics with respect to antimony tribromide depending on its concentration. The third-order rate constant obtained was 7.50 ${\times}10^{-2}l^2mol^{-2}s^{-1}$ at 28$^{\circ}$C. Similar study on the bromine-exchange reaction between antimony tribromide and ${\alpha}$-phenyl-i-butyl bromide has also been carried out. The results of the study show the same kinetic orders as the ones observed with $\alpha$-phenyl-n-butyl bromide. The third-order rate constant observed was 2.40 ${\times} 10^{-2} l^2mol^{-2}s^{-1}$ at 28$^{\circ}$C. The activation energy, the enthalpy of activation and the entropy of activation for the two exchange reactions mentioned above have been determined. The reaction mechanisms for the exchange reactions are discussed.