• Title/Summary/Keyword: $SO_2

Search Result 46,256, Processing Time 0.073 seconds

Effects of Urea and K2SO4 treatment on the mineral nutrient concentration and fruit skin color of 'Mibaekdo' peach fruits at harvest (Urea와 K2SO4 처리에 의한 복숭아 '미백도'에서 수확 시 과실의 무기성분 농도 및 과피색 변화)

  • Moon, B.W.;Yoon, I.K.;Moon, Y.J.;Nam, K.W.;Lee, Y.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.95-105
    • /
    • 2013
  • This study has been conducted to investigate the effect of Urea and K2SO4 treatment at stone hardening stage and 20 days before harvest on soil chemical properties, mineral nutrient concentration and quality of 'Mibaekdo' fruit peach. K concentration after Urea and K2SO4 treatment in soil was increased significantly by Urea 162g+K2SO4 188g/tree(standard amount) treatment at stone hardening stage, K2SO4 1.0% tree-spray, Urea 81g+K2SO4 94g/tree(half amount), Urea 162g+K2SO4 188g/tree and Urea 324g+K2SO4 376g/tree(double amount) soil treatment before harvest 20 days compared to control. T-N, K and Ca concentration in leaf was increased significantly by all treatment. but Na concentration in leaf was increased by Urea 0.5% and K2SO4 1.0% tree-spray treatment before harvest 20 days. T-N concentration in fruit skin was increased significantly by standard amount soil treatment, which decreased by K2SO4 1.0% tree-spray and half amount soil treatment. T-N, K and Ca concentration in fruit flesh(1~10mm depth flesh from peel) were increased markedly by all treatment excepted Urea 0.5% tree-spray. The leaf weight at harvest was increased markedly by Urea 0.5% tree-spray, standard amount and double amount treatment before harvest 20 days. Fruit weight was increased significantly by standard amount compared to all treatment. Red fruit skin(Hunter a value) progress was effective by K2SO4 tree-spray, half amount and double amount treatment before harvest 20 days. Fruit SSC was increased significantly by Urea 0.5% and K2SO4 tree-spray before harvest 20 days, standard amount treatment at stone hardening stage compared to control.

A Study on Synthesis of Potassium Sulfate used Sodium Sulfate and Potassium Chloride (황산나트륨과 염화칼륨을 사용한 황산칼륨 제조 연구)

  • Kim, Nam-Il;Kim, Tae-Yeon;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • In this study, Na2SO4 and KCl reagents were used to synthesize K2SO4 as a basic study for recycling byproducts generated during the manufacture of steel and cement. The mole ratio of Na2SO4 to KCl, the saturation of the solution, and the stirring temperature were controlled to derive the optimal manufacturing conditions. The microstructure and crystallinity of the materials prepared were evaluated using scanning electron microscopy and X-ray diffraction analysis. Pure K2SO4 was obtained when the mole ratio of Na2SO4 to KCl was 1:6-18, the saturation of the solution was less than 160%, and the stirring temperature was 20℃, 50℃. The optimal manufacturing conditions to maximize the crystallinity and yield of K2SO4 while minimizing the energy consumption were 1:6 mole ratio of Na2SO4 to KCl, 140% saturation of the solution, and 20℃ stirring temperature.

The Role of Oxygen in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process (황-요오드 수소 제조 공정의 분젠 반응 부분에서 $O_2$의 역할)

  • Hong, Dong-Woo;Kim, Hyo-Sub;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.278-285
    • /
    • 2010
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process of a closed cycle consists of three sections, which are so called the Bunsen reaction section, the $H_2SO_4$ decomposition section and the HI decomposition section. To identify the role of oxygen that can be supplied to the Bunsen reaction section via the $H_2SO_4$ decomposition section, Bunsen reactions with a $SO_2,\;SO_2-O_2$ mixture and $SO_2-N_2$ mixture as feed gases were carried out using a stirred reactor in the presence of $I_2/H_2O$ mixture. As the results, the amounts of $I_2$ unreacted under the feed of mixture gases were higher than those under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The results of Bunsen reaction using $SO_2-O_2$ mixture were similar to those using $SO_2-N_2$ mixture. It may be concluded that an oxygen in $SO_2-O_2$ mixture has a role as a carrier gas like a nitrogen in $SO_2-N_2$ mixture. The effects of oxygen were decreased with increasing temperature and decreasing oxygen content in $SO_2-O_2$ mixture.

Reactivity of SO2 Catalytic Reduction over Sn-Zr Based Catalyst under High Pressure Condition (고압조건에서 Sn-Zr계 촉매상에서 SO2 촉매환원 반응특성)

  • Park, Jung Yun;Park, No-Kuk;Lee, Tae Jin;Baek, Jeom-In;Ryu, Chong Kul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.316-321
    • /
    • 2010
  • The $SO_2$ catalytic reduction was carried out under the condition of high pressure in this study. Sn-Zr based oxide and CO were used as the catalyst and reducing agent for the reduction of $SO_2$ to element sulfur, respectively. In order to compare the reactivity with the pressure on the catalytic process, the reactivity tests were performed under the conditions of atmospheric pressure and 20 atm. $SO_2$ conversion, the element sulfur yield and COS selectivity were also compared with changing the reaction temperature, $CO/SO_2$ mole ratio and the space velocity(GHSV). $SO_2$ conversion increased with increasing temperature and $CO/SO_2$ mole ratio under the condition of atmospheric pressure and element sulfur yield decreased due to the production of COS by the series reaction of CO and the produced sulfur. However, high $SO_2$ conversion and high element sulfur were obtained under the condition of 20 atm. It was concluded that COS decreased due to the condensation of the produced element sulfur under the condition of high pressure. Therefore, the high sulfur yield for $SO_2$ catalytic reduction could be profitably obtained under the condition of high pressure.

Pre-Irradiation Grafting of Acrylic Acid onto Polyethylene Film (전조사법에 의한 아크릴산의 폴리에틸렌 필름에 대한 그라프트 반응)

  • Nho, Young Chang;Jin, Joon-Ha;Lee, Myun Zu
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Acrylic acid was graft-copolymerized on polyethylene film in the presence of additives such as acid and $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ using peroxide grafting technique by ${\gamma}$-ray and electron beam, and the effect of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ and acid on the grafting yield was evaluated. The grafting mechanism and the physical property of grafted films were also examined. The results showed that the inclusion of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ in acidified acrylic acid grafting solution was extremely beneficial and led to a most unusual enhancement effect in the radiation grafting. In the other hand, inclusion of mineral acid in the grafting solution in the absence of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ could not lead to he suitable grafting reaction by the severe homopolymerization of acrylic acid. The addition of $H_2SO_4$, and HCl led to much higher grafting yield than $HNO_3$and $CH_3COOH$. It was shown that grafting yield of ${\gamma}$-ray irradiated-polyethylene was higher than that of electron beam irradiated polyethylene.

  • PDF

Application of Sulfate Solvent in Acid Bake-water Leaching System for Valuable Metal Leaching from Sulfide Mineral (황화광물로부터 유용금속 침출을 위한 Acid Bake-water Leaching System 내 황산염 용매제의 적용성)

  • Ko, Chin Surk;Togtokhmaa, B.;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • The objective of this study was to investigate the application of sulfate solvents for the economic and eco-friendly leaching of valuable metals from Au concentrate using an acid bake-water leaching system (AWS). AWS experiments were performed using an electric furnace with various baking temperatures ($100-500^{\circ}C$) and sulfate solvents ($H_2SO_4$, $K_2SO_4$, $(NH_4)_2SO_4$, $MgSO_4$, and $CaSO_4$). The efficiency of the valuable metal leaching increased as the baking temperature was increased to $400^{\circ}C$. Based on the AWS leaching time experiments, the maximum leaching rate occurred with the aqueous $(NH_4)_2SO_4$ solvent. This study demonstrates that aqueous $(NH_4)_2SO_4$ could be used as an effective solvent for valuable metal leaching using an AWS.

A Study on the Li$^+$ Ion Conducting Solid Electrolytes (Li$^+$ 이온성 고체전해질에 관한 연구)

  • Park Sung Ho;Lee Doo-Weon;Kim Keu Hong;Choi Jae Shi
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.324-328
    • /
    • 1991
  • The Li$_2SO_4$ system containing various mol${\%}$ of CaSO$_4$ were synthesized. The structure and the electrical conduction of these system were studied at the temperature from 20 to 700$^{\circ}C$. In the region of CaSO$_4$ mol ratio higher than 0.05, it could be confirmed that Li$_2SO_4-CaSO_4$ system does not form solid solution. Due to the substituted Ca$^{2+}$, the transition temperature (monoclinic to cubic) is shifted to the low temperature. The ionic conduction of monoclinic Li$_2SO_4-CaSO_4$ increased with increasing lithium vacancy which was produced by substituted Ca$^{2+}$, but that fcc Li$_2SO_4-CaSO_4$ was not influenced by the substituted Ca$^{2+}$ ion.

  • PDF

CO$_2$ Absorption/Regeneration of Sodium-based Dry Sorbent and the Effect of SO$_2$ Concentration (Sodium계 건식흡수제의 CO$_2$ 흡수/재생 및 SO$_2$ 농도의 영향)

  • Kang, Seung-Yub;Cho, Ki-Chul;Lee, Gou-Hong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.225-233
    • /
    • 2008
  • Accoring to the worldwide interest to control CO$_2$ which contributes to global warming 50%, new techniques to reduce CO$_2$ are under development. Therefore, this study investigated that CO$_2$ absorption/regeneration of Sodium-based dry sorbent and the effect of SO$_2$ concentration in the fixed bed reactor. The dry sorbents were prepared in the condition of different PVA contents and calcination temperatures. As the results of this study, BET surface area showed 832.79 m$^2$/g and SEM result showed possibility as dry sorbent due to having of much micropore distribution. Also, the fixed bed reactor showed decreased CO$_2$ absorption capacity with SO$_2$ injection, because of the generation of $Na_2SO_3$ and $Na_2SO_4$.

Efficient Desulfurization and Denitrification by Low Temperature Plasma Process (저온 플라즈마 공정에 의한 효율적인 탈황 및 탈질)

  • Kim, Sung-Min;Kim, Dong-Joo;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.129-135
    • /
    • 2005
  • In this study, we have analyzed the removal efficiencies of $SO_2$ and $SO_2/NO$ by the pulsed corona discharge process and investigated the effects of several process variables on those removal efficiencies systematically. The effects of process variables such as applied voltage, pulse frequency, residence time, and initial concentrations of reactants (NO, $SO_2$, $NH_3$, $H_2O$, and $O_2$) on the removal efficiency were analyzed. As the applied voltage, the pulse frequency or the residence time increases or as the $O_2$ or the $H_2O$ or the $NH_3$ concentration in the inlet feed gas stream increases, the $SO_2$ removal efficiencies and the simultaneous removal efficiencies of $SO_2/NO$ also increase. These experimental results can be used as a basis to design the pulsed corona discharge process to remove $NO_x$ and $SO_x$.

A Study on $SO_2$Removal in Flue Gas by Semidry Flue Gas Desulfurization Method (반건식 배연탈황법에 의한 연소 페가스 중 $SO_2$제거에 관한 연구)

  • Song, Ho-Cheol;Lee, Yun-Gi;Park, Jin-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.273-280
    • /
    • 1998
  • The investigation on the removal of 502 gas fro.In flue gas which causes serious air pollution was made by using a semi dry flue gas desulfurization method. Experiments were carried out as a function of process variables which would affect SO2 removal efficiency. Process variables inclilded SO2 inlet concentration, inlet temperature of simulated flue gas, sorbent weight fraction, and volume flow rate of sorbent slurry. In this study, used sorbent was Ca(OH), and simulated flue gas was prepared by mixing pure SO2 gas with air. Experimental conditions were varied at 140~18$0^{\circ}C$ of inlet temperature of the simulated flue gas, 500~2000ppm of inlet SO2 concentration, 0.4~1.0% of sorbent concentration, and 10~25 mL/min of flow rate of sorbent slurry. Among process variables, inlet concentration of SO2 was found to be the most significant factor to affect SO2 removal efficiency. The concentration of Ca(OH2) had a lower effect on SO2 removal than SO2 inlet concentration removal amount was 0.108, 0.141, 0.153 g SO2/g Ca(OH)2 respectively- As 200 mmol of HNO3 was added into slurry to improve removal efficiency, initial pH was maintained and solubility of slurry increased, so that removal efficiency elevated. Adding over 200 mmol of HNO3 into slurry caused removal efficiency lower. Therefore it could be concluded the optimum was 200 mmol of HNO3 input.

  • PDF