• Title/Summary/Keyword: $SO_2

Search Result 46,256, Processing Time 0.065 seconds

The Effect of SO2 in Flue Gas on the SCR Activity of V/TiO2 (배가스 중 SO2가 V/TiO2 SCR활성에 미치는 영향)

  • Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.490-497
    • /
    • 2006
  • $V_{2}O_{5}$/$TiO_{2}$ catalyst can be deactivated by ammonium salts formed by $SO_{2}$ oxidation and unreacted ammonium in presence of $SO_{2}$ in flue gas. The deactivation of catalyst by $SO_{2}$ depends on the $SO_{2}$ oxidation to $SO_{3}$. The oxidation of $SO_{2}$ is weakly affected by oxygen concentration, and strongly by the amount of vanadium loaded onto titania supports. Because unreacted ammonia is one of elements to form the ammonium salts, it is important to control the mole ratio of $NH_{3}/NOx$ in SCR. Thus the experiments about $NH_{3}/NOx$ were carried out. The reason of low activity of catalyst deactivated by ammonium salts is the change of pore volume. And TPD (Temperature Programmed Decomposition) was performed to find the decomposition of ammonium bisulfate on deactivated catalyst.

The Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur over Supported Cobalt Catalysts (담지 코발트 촉매를 이용한 SO2의 원소황으로의 환원반응 특성)

  • Park, Joon Hyo;Han, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1129-1135
    • /
    • 1999
  • The reduction of $SO_2$ by CO over supported cobalt catalysts was investigated within the temperature range of $350{\sim}550^{\circ}C$, initial $SO_2$ concentration of 1000~10000 ppm, $CO/SO_2$ molar ratio of 1.0~3.0 and space velocity of $5000{\sim}15000h^{-1}$. Several types of supports such as ${\gamma}-Al_2O_3$, $TiO_2$ were tested. The $SO_2$ conversion and selectivity to elemental sulfur were investigated using a differential fixed bed reactor at atmospheric pressure. The catalyst prepared by wet impregration of 5 wt % cobalt on ${\gamma}-Al_2O_3$ showed $SO_2$ conversion higher than 90% and COS yield lower than 6% at temperature above $400^{\circ}C$. The optimum $CO/SO_2$ molar ratio was investigated as 2.0. At higher $CO/SO_2$ molar ratio, the $SO_2$ conversion became higher but the main product was COS. The effect of $SO_2$ concentration and space velocity over $SO_2$ conversion and COS yield was not appreciable in the experimental range. The activated cobalt phase was detected as $CoS_2$ and the $CoS_2$ phase unchanged even after reaction.

  • PDF

Recovery of $H_2SO_4$from Sulfuric Acid Wastes by Diffusion Dialysis (확산투석에 의한 황산폐액으로부터 황산의 회수)

  • 정진기;남철우;정강섭;이재천
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • The recovery of $H_2$$SO_4$from sulfuric acid waste was attempted by a diffusion dialysis method using an anion extchange membrane. The effect of flow rate, temperature, concentration of metal ions on the recovery rate was studied. The recovery of $H_2$$SO_4$decreased with the concentration of $H_2$$SO_4$and flow rate. The recovery increased with the flow rate ratio of water/$H_2$$SO_4$solution upto 1 above which no further increase was observed. The flow rate did not affect the rejection of Fe and Ni ions. As a result, about 80% of $H_2$$SO_4$could be recovered from sulfuric acid wastes which contains 4.5M free$-H_2$$SO_4$at the flow rate of 0.26 $1/hr-m^2$. The concentration and purity of recovered $H_2$$SO_4$was 4.3M and 99.8%, respectively.

Study on the In-Furnace Desulfurization for Oxy-Fuel Combustion Flue Gases Using Drop Tube Furnace (Drop Tube Furnace를 이용한 순산소연소 배가스 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.512-517
    • /
    • 2009
  • $SO_2$ concentrations in oxy-fuel combustion flue gases increases about three times as high as that of conventional air combustion system owing to the flue gas recirculation for the control of combustion temperature. So the desulfurization reaction is different from that of the conventional air combustion system due to exceptionally high $CO_2$ and $SO_2$ concentration. In this study, drop tube furnace(DTF) system was used to investigate the desulfurization characteristics of limestone in oxy-fuel combustion furnace. The experiments were performed under $O_2/CO_2$ atmosphere to examine the effect of operating variables such as reaction temperatures, Ca/S ratios and inlet $SO_2$ concentrations on the $SO_2$ removal efficiencies. $SO_2$ removal efficiency increased with reaction temperature, Ca/S ratio and inlet $SO_2$ concentration. And the addition of water vapor resulted in about 4~6% of increase in $SO_2$ removal efficiency.

Photovoltaic Effects of the p$\cdot$Si-Electrolyte Junction (p$\cdot$Si-전해질 접합의 광기전력 효과)

  • Han, Seok-Yong;Kim, Yeon-Hui;Kim, Hwa-Taek
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.52-54
    • /
    • 1982
  • p·Si-전해질 접합을 전해질로 6N H2SO4, 6N H2SO4(Ti3+), 6N H2SO4(Ti4+), 6N H2SO4(Ti4+/Ti3+)을 사용하여 만들었다. 이들 전해질중 6N H2SO4(Ti4-/Ti3+)을 사용할 때 p·Si 광음극이 안정하게 동학하며 높은 광전 감도를 가지고 있었다. p·Si-electrolyte junction are prepared by using p·Si photocatode in four different electrolytes such as 6N H2SO4, 6N H2SO4(Ti3+), 6N H2SO4(Ti4+), 6N H2SO4(Ti4+/Ti3+) respectively. Among those electrolytes 6N H2SO4(Ti4-/Ti3+) shows very good results, in which p·Si photocathode is stable.

  • PDF

Effects of Multiple-Cycle Operation and SO2 Concentration on CO2 Capture Capacity of Three Limestones in a Fluidized Bed Reactor (유동층 반응기에서 세 가지 석회석의 CO2 흡수능력에 미치는 반복횟수와 SO2 농도의 영향)

  • Ryu, Ho-Jung
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.44-51
    • /
    • 2006
  • Effects of multiple-cycle operation and $SO_2$ concentration on $CO_2$ capture characteristics of three limestones were investigated in a fluidized bed reactor. For each of these sorbents, the measured $CO_2$ capture capacity decreased as the number of cycles increased and as the $SO_2$ concentration increased. On the other hand, the $SO_2$ capture increased with the increased number of cycles and the $SO_2$ concentration. The total calcium utilization decreased as the number of cycles increased, but the effect of $SO_2$ concentrations on the total calcium utilization depended on the type of limestone. For Strassburg limestone, the total calcium utillization decreased with increasing $SO_2$ concentration. However, for Luscar and Danyang limestones, the total calcium utilization was almost independent of $SO_2$ concentration for the range investigated. The results showed that $SO_2$ in flue gas reduced the $CO_2$ capture capacity of limestone and that the sulfation pattern affected the $CO_2$ capture capacity.

A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine (직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구)

  • Yoo, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • It has been generally recognized that $N_2O$(Nitrous Oxide) emission from marine diesel engines has a close correlation with $SO_2$(Sulfur Dioxide) emission, and diversity of fuel elements using ships affects characteristics of the $N_2O$ emission. According to recent reports, in case of existence of an enough large NO(Nitric Oxide) generated as fuel combustion, effect of the $SO_2$ emission in exhaust gas on the $N_2O$ formation is more vast than effect of the NO. Therefore, $N_2O$ formation due to the $SO_2$ element operates on a important factor in EGR(Exhaust Gas Recirculation) systems for NOx reduction. An aim of this experimental study is to investigate that intake gas of the diesel engine with increasing of $SO_2$ flow rate affects $N_2O$ emission in exhaust gas. A test engine using this experiment was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition was set up at a 75% load. A standard $SO_2$ gas with 0.499%($m^3/m^3$) was used for changing of $SO_2$ concentration in intake gas. In conclusion, the diesel fuel included out sulfur elements did mot emit the $SO_2$ emission, and the $SO_2$ emission in exhaust gas according as increment of the $SO_2$ standard gas had almost the same ratio compared with $SO_2$ rate in mixture inlet gas. Furthermore, the $N_2O$ element in exhaust gas was formed as $SO_2$ mixture in intake gas because increment of $SO_2$ flow rate in intake gas increased $N_2O$ emission. Hence, diesel fuels included sulfur compounds were combined into $SO_2$ in combustion, and $N_2O$ in exhaust gas should be generated to react with NO and $SO_2$ which exist in a combustion chamber.

Damage Characteristics of Metal Materials According to the SO2 Concentration (이산화황 농도에 따른 금속시편의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Shin, Eun Jeong;Lee, Sun Myung
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.176-187
    • /
    • 2013
  • A study has been carried out on metal materials in order to identify the quantitative relation between the concentration and damage characteristics after evaluation of the damage characteristics according to the $SO_2$ concentration. The prepared metal samples, which were categorized according to the material (silver, copper, iron, lead, brass) were exposed to 0.01, 0.12, 1, 10, 100, 1,000, and 5,000ppm of $SO_2$ for 24 hours and the optical, physical, chemical deterioration rates both before and after testing were evaluated. The results showed optical deterioration, a loss of gloss on silver specimen with $SO_2$ 100ppm, an increase of color difference on brass, iron, copper and lead specimens with $SO_2$ 5,000ppm, as well as physical changes such as an increase of thickness and corrosion rate on iron sample with $SO_2$ 5,000ppm. In the case of chemical changes such as an increase sulfate ion ($SO{_4}^{2-}$) concentration and decrease of pH on iron and brass specimens were identified. These results suggest that $SO_2$ 100ppm caused clear optical deterioration on some metals such as silver and physicochemical and optical deterioration were identified at $SO_2$ 5,000ppm regardless of metal type. Also, It was concluded that iron and brass are the most susceptible of the metal specimens to $SO_2$.

The Influence of Thermal Condition on the Variation of Reaction Product Composition depending on the Constituent of Dolomite in the Absorption Process of SO2 by Dolomite (Dolomite에 의한 SO2 흡수공정에서 Dolomite 조성에 따른 생성물질 구성 변화에 대한 열적 조건 영향)

  • You, Dong-Ju;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • The thermal effect on the compositional change of the $SO_2$ absorption process product was investigated compared with the composition of raw material when dolomite is employed in place of lime in the scrubbing process based on thermodynamic estimation. It was considered that the equilibrium reactions which directly related with the formation of $CaSO_4$ and $MgSO_4$, the absorption process products, are those between $Ca^{2+}$ and $Ca(OH)_2$, $Mg^{2+}$ and $Mg(OH)_2$, and the secondary dissociation reaction of $H_2SO_4$. It was thought to be necessary to examine the enthalpy change for the formation reactions of $CaSO_4$ and $MgSO_4$ along with the thermal feature of the relative reactions to figure out the influence of temperature on the compositional change of absorption process products. The stable regions for $Ca(OH)_2$ and $Mg(OH)_2$ in Pourbaix diagram were found to be increased as temperature rises and the equilibrium reaction between $Ca^{2+}$ and $Ca(OH)_2$ was investigated to be more strongly influence by temperature change compared with the equilibrium reaction between $Mg^{2+}$ and $Mg(OH)_2$. The amounts of $CaSO_4$ and $MgSO_4$ were anticipated to be decreased with temperature considering the thermal characteristics for the equilibrium reactions regarding calcium, magnesium, and $H_2SO_4$. It was understood that the formation ratio between $CaSO_4$ and $MgSO_4$ is greater than the composition ratio between calcium and magnesium contained in dolomite at specific temperature and the decrease of the formation ratio of $CaSO_4$ and $MgSO_4$ with temperature was estimated to be diminished as the content of calcium in dolomite is increased. In addition, the extent of the change in the compositional ratio between absorption process products was examined to be reduced compared with the composition of raw material as the calcium content in dolomite is raised.

The Reactivity for the SO2 Reduction with CO and H2 over Sn-Zr Based Catalysts (Sn-Zr계 촉매 상에서 CO와 H2를 이용한 SO2 환원 반응특성)

  • Han, Gi Bo;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.356-362
    • /
    • 2006
  • The $SO_2$ reduction using CO and $H_2$ over Sn-Zr based catalysts was performed in this study. Sn-Zr based catalysts with Sn/Zr molar ratio (0/1, 1/4, 1/1, 2/1, 3/1, 1/0) were prepared by the precipitation and co-precipitation method. The effect of the temperature on the reaction characteristics of the $SO_2$ reduction with a reducing agent such as $H_2$ and CO was investigated under the conditions of space velocity of $10,000ml/g_{-cat.}h$, $([CO(or\;H_2)]/[SO_2])$ of 2.0. As a result, the activity of Sn-Zr based catalysts were higher than $SnO_2$ and $ZrO_2$. The reactivity for the $SO_2$ reduction with CO was higher than that with $H_2$, and sulfur yield in the $SO_2$ reduction by $H_2$ was higher than that by CO. The reactivity for the $SO_2$ reduction with $H_2$ was increased with the reaction temperature regardless of Sn-Zr based catalyst with a Sn/Zr molar ratio. $SnO_2-ZrO_2$ (Sn/Zr=1/4) had highest activity at $550^{\circ}C$, in the $SO_2$ reduction with $H_2$ and $SO_2$ conversion of 94.4% and sulfur yield of 66.4% were obtained at $550^{\circ}C$. On the other hand, in the $SO_2$ reduction by CO, the reactivity was decreased with the increase over $325^{\circ}C$. At the optimal temperature of $325^{\circ}C$, $SO_2$ conversion and sulfur yield were about 100% and 99.5%, respectively, in the $SO_2$ reduction over $SnO_2-ZrO_2$ (Sn/Zr=3/1). Also, the $SO_2$ reduction using syngas with $CO/H_2$ ratio over $SnO_2-ZrO_2$ (Sn/Zr=2/1) was performed in order to investigate the application possibility of the simulated coal gas as the reductant in DSRP. As a result, the reactivity of the $SO_2$ reduction using syngas with $CO/H_2$ ratio was increased with increasing the CO content of syngas. Therefore, it could be known that DSRP using the simulated coal gas over Sn-Zr based catalyst is possible to be realized in IGCC system