• Title/Summary/Keyword: $Red{\beta}$

Search Result 560, Processing Time 0.033 seconds

Chemical Analyses of Coniferous Flavonoids in Korea - The Flavonoids of Red Pine Bark(Pinus densiflora) - (침엽수(針葉樹) 수피(樹皮)의 Flavonoid에 관한 성분분석(成分分析) (I) - 소나무 수피(樹皮)의 Flavonoids -)

  • Kim, Hoon;Song, Hong-Keun;Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.73-79
    • /
    • 1991
  • The flavonoids from plants is very widly used as natural dye for food and medicine etc. In this study, red pine which is widespread in Korea was studied to find new chemicals which may use as raw material for the special purpose. The fIavonoids of red pine bark were separated with Sephadex LH-20 and Toyo pearl HW-40F as packed materials and the structure of separated f1avonoids was determined by $^1H$-and $^{13}C$-NMR spectroscopy. The (+) catechin which is widespread in nature and dihydroquercetin-3'-0-${\beta}$-galactoside were found in red pine bark. The dihydroquercetin-3'-0-${\beta}$-galactoside is newly found in this species.

  • PDF

Antioxidant and anti-inflammatory activity of extracts from red beet (Beta vulagaris) root (레드 비트 뿌리 추출물의 항산화 및 항염증 효과)

  • Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.413-420
    • /
    • 2017
  • This study was designed to examine the in vitro antioxidant and anti-inflammatory effects of red beet (Beta vulagaris) root. Red beet root was extracted using 70% ethanol and then fractionated sequentially with n-hexane, ethyl acetate and butanol. Antioxidative ability was evaluated by bioassays using total polyphenol contents and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid diammonium salt) radical scavenging activity. Ethyl acetate fraction of red beet root was best on total polyphenol contents ($37.02{\pm}0.37mg\;GAE/g$) and ABTS radical scavenging effects ($IC_{50}$ $42.9{\pm}9.5{\mu}g/mL$). For the anti-inflammatory activity in RAW264.7 cells, the hexane fraction showed the highest inflammatory effect. Dose response studies were performed to determine the inhibitory effect of hexane fraction of red beet root on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The hexane fraction of red beet root inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2, and protein expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$), in a dose-dependent manner. These results suggest that red beet root has considerable potential as a functional food ingredient with antioxidative and anti-inflammatory effects.

A Comparison of the Composition of the Major Headspace Volatiles Between the Korean Ginseng and the Chinese Ginseng (한국인삼과 중국인삼의 주요 헤드스페이스성분 조성 비교)

  • 손현주;허정남
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.196-200
    • /
    • 1997
  • The headspace volatiles of the Korean ginseng and the Chinese ginseng were extracted using the SepPak Cl8 cartridge (Wasters Co.) and were analyzed using GC/MSD. The overall GC pattern of the headspace volatiles of the Chinese ginseng was similar to that of the Korean ginseng, but the composition ratios of the two major components, $\beta$-panasinsene to $\beta$-muurolene, were quite different between them. The composition ratios of $\beta$-panasinsene to $\beta$-muurolene of the Korean red and white ginseng were 1.02$\pm$0.28 (n=19) and 1.49$\pm$0.55 (n=14) , respectively. However the com- position ratios of the Chinese red and dried ginseng were 0.58$\pm$0.19 (n=41) and 0.57$\pm$0.17 (n=28), repetitively, which were significantly lower than those of the Korean ginseng at I% level. The composition ratio of the two major headspace volatile components, $\beta$-panasinsene to ${\gamma}$-muurolene, is thought to be as a useful indicator for differentiating the Chinese ginseng with the Korean ginseng.

  • PDF

Essential Oil Components of Leaves and Resins from Pinus densiflora and Pinus koraiensis (소나무와 잣나무의 잎과 수지에 함유된 정유 성분)

  • Song, Hong-Keun;Kim, Jae-Kwang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.59-67
    • /
    • 1994
  • The essential oils of leaves and resins from P. densiflora and P. koraiensis were analyzed to identify their components. After each retention times of 45 known terpenoids were dertermined with a fixed analytical condition by GC the essential oil compounds of leaves and resins were identified by comparing their retention times with the retention times of known standards. To confirm these results the essential oil components of leaves from P. koraiensis were analized by 2 different GC/MS. According to these results, 36 terpenoids in essential oils of leaves from P. densiflora and P. koraiensis were identified and 15 terpenoids and 22 terpenoids were identified from P. koraiensis resin and P. densiflora resin, respectively. The major components which are more than 2% of total amaunt of volatile components were as follows: 1. The major terpenoids of leaves from red pine. ${\alpha}$-pinene, camphene, ${\beta}$-pinene, D-limonene, ${\beta}$-phellandrene, myrcene, terpinolene, ${\alpha}$-terpineol. 2. The major terpenoids of leaves from korean pine. ${\alpha}$-pinene, camphene, myrcene, D-limonene, 3-carene, terpinolene, bornyl acetate, ${\beta}$-caryophyllene, ${\alpha}$-terpineol, borneol, ${\delta}$-cardinene. 3. The major terpenoids of resin from red pine. ${\alpha}$-pinene, ${\beta}$-pinene, myrcene, ${\beta}$-phellandrene, linalool, linalyl acetate. 4. The major terpenoids of resin from korean pine. ${\alpha}$-pinene, ${\beta}$-pinene, D-limonene, ${\beta}$-caryophyllene, phytol.

  • PDF

The Effect of Light Quality on the Major Components of Hot Pepper Plant(Capsicum annuum L.) Grown in Polyethylene Film House -II. Chlorophyll, Carotenoid and Capsaicin Content- (신미종(辛味種) 고추의 Polyethylene Film House 재배시(栽培時) 주요성분(主要成分)에 미치는 Light Quality의 영향 - II. Chlorophyll, Carotenoid 및 Capsaicin 함량(含量) -)

  • Kim, Kwang-Soo;Kim, Soon-Dong;Park, Jyung-Rewng;Roh, Seung-Moon;Yoon, Tai-Hyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.8-10
    • /
    • 1978
  • After growing the hot pepper fruits in polyethylene film(PE) house covered with white or red colored film, the fruits were collected and chlorophyll, carotenoid, and capsaicin content was analyzed. Although total chlorophyll content was higher in fruit of white PE house$(208.9{\mu}g/g-F.W)$ as compared to that of red PE house $(153.0{\mu}g/g-F.W)$ grown plants, the ratio of chlorophyll a over b were similar, giving 2.15 and 2.13 respectively in white and red PE house. Total carotenoid, $\beta$-carotene and the capsaicin content were higher in fruits of red PE house grown plants. Therefore, it is suggested that red film could be used as a successful covering material for poly ethylene film house.

  • PDF

Changes in β-Carotene, Vitamin E, and Folate Compositions and Retention Rates of Pepper and Paprika by Color and Cooking Method (고추와 파프리카의 색과 조리방법의 차이에 따른 베타카로틴, 비타민 E, 엽산의 함량과 잔존율)

  • Kim, Hyeon Young;Kim, Honggyun;Chun, Jiyeon;Chung, Heajung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.713-720
    • /
    • 2017
  • ${\beta}-Carotene$, vitamin E, and folate contents according to color and species of Capsicum annuum were investigated. In addition, four C. annuum species were cooked by using different methods (boiling, pan-cooking, pan-frying, deep-frying, steaming, roasting, and microwaving), and retention rates of ${\beta}-Carotene$, vitamin E, and folate affected by color and species were evaluated. Weight loss was observed in all paprika and pepper species using all cooking methods. ${\beta}-Carotene$ and folate contents of C. annuum samples were significantly different by color, species, and cooking method (P<0.05), whereas vitamin E contents were not significantly affected by species. ${\beta}-Carotene$, vitamin E, and folate contents (mg/100 g) of raw C. annuum showed ranges of 95.4 (green pepper)~2,441.1 (red pepper), 0.7 (green paprika)~4.2 (red paprika), and 6.2 (green pepper)~148.7 (red pepper). As a result, the highest ${\beta}-Carotene$, vitamin E, and folate contents were detected in deep fried red pepper, roasted red pepper, and boiled red pepper, respectively, among the cooked samples. Retention rates of C. annuum varied by cooking method, resulting in ranges of 77.3% (boiled red pepper)~356.4% (roasted green pepper) for ${\beta}-Carotene$, 2.0% (microwaved red pepper)~789.3% (deep-fried green paprika) for vitamin E, and 20.9% (microwaved red pepper)~445.1% (steamed green pepper) for folate. Over 75% retention rates were observed for ${\beta}-Carotene$, vitamin E, and folate in all samples except for red pepper. However, in red pepper, vitamin E and folate retentions were remarkably lowered by deep frying and micro-waving, resulting in rates of 2.0~32.1%. This study provides information on effective cooking methods for vitamin retention in C. annuum depending on color and species.

Effect of Light Quality (Red, Blue) on the Major Components of Hot Pepper Fruit (신미종(辛味種) 고추의 주요(主要) 성분(成分)의 함량(含量)에 미치는 광질(光質) (Red, Blue)의 영향(影響))

  • Kim, Kwang-Soo;Roh, Seung-Moon;Park, Jyung-Rewng
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.162-165
    • /
    • 1979
  • In order to study the red-coloring effects of hot pepper fruit by light treatment during after-ripening period, 'Karak Geumjang No. 2 green hot pepper fruits, Capsicum annuum L., after 30 to 35 days from flowering were harvested and white, red and blue light treatments at the energy level of $40\;{\mu}watt/cm^2/sec$ were given at $25^{\circ}C$. When compared with white light, total chlorophyll content was strikingly decreased by blue light treatment and no difference in the chlorophyll contents between red and white light was observed. The chlorophyll a and b showed a similar decreasing patterns as shown in the case of total chlorophyll. Total carotenoid content was higher in the blue light treatment by 31% than the white light. However, red light decreased the carotenoid condent as compared to the white light treatment. But ${\beta}-carotene$ was not changed by red light as compared to white light. Blue light treatment increased ${\beta}-carotene$ content (0.71 mg%-f.w.) as compared to white light treatment (0.56 mg%-f.w.). Therefore, blue light treatment increased red-coloring responses of hot pepper fruit during after-ripening period. The capsaicin content was slightly increased by blue light and no red light influence was observed.

  • PDF

Studies on the Lipid Components of Red Pepper Seed oil (고추씨 기름의 지질성분에 관한 연구)

  • 최영진
    • Journal of the Korean Home Economics Association
    • /
    • v.28 no.2
    • /
    • pp.31-36
    • /
    • 1990
  • This studies were conducted to find out the possibility of utilizing red pepper seed as resources of food fats, the research method was designed to make a comparison between crude and refined oil, and the results of the studies are as follows : The red pepper seed contained 28% of crude fat and 21% of crude protein. The main fatty acids of red pepper seed oil were linoleic acid(72.10~72.31%), palmitic acid(12.81~13.28%) and oleic acid(9.47~10.48%). The linolenic acid content was so small that is will not influence the autoxidation of the red pepper seed oil. The major triglyceride type of crude and refined oil of red pepper seeds were C52 and C54. The other types were found in a small quantity. The sterol composition of crude oil was $\beta$-sitosterol, campasterol, stigmasteral and brassicasterol,in the quantity order. after refining, brassicasterol was not detected, and the content was decreased by one six and one eight. The toropherol composition of crude and refined oil, tocopherol analog was composed of three kinds $\alpha$-, ${\gamma}$-, $\delta$-, but no $\beta$-form. the quantity of ${\gamma}$-, $\alpha$- and $\delta$-tocopherol were 162.91, 83.72, 43.98mg% respectively. The Quantity of and capsaicin in crude oil was 1,296 ppm, and it was reduced consicerably by refining and removed completely after the process of redeodorization.

  • PDF

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.