• Title/Summary/Keyword: $Rb_1$

Search Result 1,249, Processing Time 0.032 seconds

Two Anhydrous Zeolite X Crystal Structures, $Ca_{31}Rb_{30}Si_{100}Al_{92}O_{384}$ and $Ca_{28}Rb_{36}Si_{100}Al_{92}O_{384}$

  • 장세복;김미숙;한영욱;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.631-637
    • /
    • 1996
  • The structures of fully dehydrated Ca2+- and Rb+-exchanged zeolite X, Ca31Rb30Si100Al92O384(Ca31Rb30-X; a=25.009(1) Å) and Ca28Rb36Si100Al92O384(Ca28Rb36-X; a=24.977(1) Å), have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd&bar{3} at 21(1) ℃. Their structures were refined to the final error indices R1=0.048 and R2=0.041 with 236 reflections for Ca31Rb30-X, and R1=0.052 and R2=0.043 with 313 reflections for Ca28Rb36-X; I>3σ(I). In both structures, Ca2+ and Rb+ ions are located at six different crystallographic sites. In dehydrated Ca31Rb30-X, sixteen Ca2+ ions fill site I, at the centers of the double 6-rings (Ca-O=2.43(1) Å and O-Ca-O=93.3(3)°). Another fifteen Ca2+ ions occupy site II (Ca-O=2.29(1) Å, O-Ca-O=119.5(5)°) and fifteen Rb+ ions occupy site II opposite single six-rings in the supercage; each is 1.60 Å from the plane of three oxygens (Rb-O=2.77(1) Å and O-Rb-O=91.1(4)°). About two Rb+ ions are found at site II', 1.99 Å into sodalite cavity from their three-oxygen plane (Rb-O=2.99(1) Å and O-Rb-O=82.8(4)°). The remaining thirteen Rb+ ions are statistically distributed over site III, a 48-fold equipoint in the supercages on twofold axes (Rb-O=3.05(1) Å and Rb-O=3.38(1) Å). In dehydrated Ca28Rb36-X, sixteen Ca2+ ions fill site I (Ca-O=2.41(1) Å and O-Ca-O=93.6(3)°) and twelve Ca2+ ions occupy site II (Ca-O=2.31(1) Å, O-Ca-O=119.7(4)°). Sixteen Rb+ ions occupy site II; each is 1.60 Å from the plane of three oxygens (Rb-O=2.81(1) Å and O-Rb-O=90.6(3)°) and four Rb+ ions occupy site II'; each is 1.88 Å into sodalite cavity from their three-oxygen plane (Rb-O=2.99(1) Å and O-Rb-O=83.8(2)°). The remaining sixteen Rb+ ions are found at III site in the supercage (Rb-O=2.97(1) Å and Rb-O=3.39(1) Å). It appears that Ca2+ ions prefer sites I and II in that order, and that Rb+ ions occupy the remaining sites. Rb+ ions are too large to be stable at site I, when they are competing with other smaller cations like Ca2+ ions.

Crystal Structure of Dehydrated $Rb^{+}$-Exchanged Zeolite X, $Rb_{71}Na_{21}Si_{100}Al_{92}O_{384}$

  • 이석희;김양;김덕수;Karl Seff
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.98-103
    • /
    • 1998
  • The crystal structure of dehydrated $Rb^+$-exchanged zeolite X, stoichiometry $Rb_{71}Na_{21}-X\; (Rb_{71}Na_{21}Si_{100}Al_{92}O_{384})$ per unit cell, has been determined from single-crystal X-ray diffraction date gathered by counter methods. The structure was solved and refined in the cubic space group Fd3, a=25.007(3) Å at 21(1) ℃. The crystal was prepared by ion exchange in a flowing stream using a 0.05 M aqueous RbOH solution (pH=12.7). The crystal was then dehydrated at 360 ℃ and $2{\times}10^{-6}$ torr for two days. The structure was refined to the final error indices, $R_1=0.047$ and $R_2=0.040$ with 239 reflections for which I> 3σ(I). In this structure, 71 $Rb^+$ ions per unit cell are found at six different crystallographic sites and 21 $Na^+$ ions per unit cell are found at two different crystallographic sites. Four and a half $Rb^+$ ions are located at site Ⅰ, the center of the hexagonal prism. Nine $Rb^+$ ions are found at site Ⅰ' in the sodalite cavity (Rb-O=2.910(15) Å and O-Rb-O=78.1(4)°). Eighteen $Rb^+$ ions are found at site Ⅱ in the supercage (Rb-O=2.789(9) Å and O-Rb-O=92.1(4)°). Two and a half $Rb^+$ ions, which lie at site Ⅱ', are recessed ca. 2.07 Å into the sodalite cavity from their three O(2) oxygen planes (Rb-O=3.105(37) Å and O-Rb-O=80.6(5)°). Thirty-two $Rb^+$ ions are found at site Ⅲ deep in the supercage (Rb-O=2.918(12) Å and O-Rb-O=71.9(4)°), and five $Rb^+$ ions are found at site Ⅲ'. Seven $Na^+$ ions also lie at site Ⅰ. Fourteen $Na^+$ ions are found at site Ⅱ in the supercage (Na-O=2.350(19) Å and O-Na-O=117.5(6)°).

Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats (지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향)

  • Jung, Hyun-Lyung;Shin, Young Ho;Kang, Ho-Youl
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1197-1203
    • /
    • 2013
  • This study investigated the effects of endurance exercise and ginsenoside $Rb_1$ on AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K) protein expression and glucose uptake in the skeletal muscle of rats. A total of 32 rats were randomly divided into four groups: CON (Control group, n=8), Ex (Exercise group; 25 m/min for 1 h, 6 days/week, 2 weeks, n=8), $Rb_1$ (Ginsenoside $Rb_1$ group; n=8), and $Rb_1/Ex$ ($Rb_1$+Exercise group, n=8). The $Rb_1$ and $Rb_1/Ex$ groups were incubated in ginsenoside $Rb_1$ (KRBP buffer, $100{\mu}g/mL$) for 60 min after a 2-week experimental treatment. After 2 weeks, the expression of phosphorylated $AMPK{\alpha}$ $Thr^{172}$, total $AMPK{\alpha}$, the p85 subunit of PI3K, pIRS-1 $Tyr^{612}$, and pAkt $Ser^{473}$ were determined in the soleus muscle. Muscle glucose uptake was measured using 2-deoxy-D-[$^3H$] glucose in epitroclearis muscle. Muscle glucose uptake was significantly higher in the three experimental groups (Ex, $Rb_1$, $Rb_1/Ex$) compared to the CON group (P<0.05). The expression of $tAMPK{\alpha}$ and $pAMPK{\alpha}$ $Thr^{172}$ was significantly higher in the Ex, $Rb_1$, and $Rb_1/Ex$ groups compared to the CON group (P<0.05). The expression of pAkt $Ser^{473}$ was significantly higher in the $Rb_1$ group compared to the CON and EX groups. However, the expression of pIRS-1 $Tyr^{612}$ and the p85 subunit of PI3K were not significantly different between the four groups. Overall, these results suggest that ginsenoside $Rb_1$ significantly stimulates glucose uptake in the skeletal muscle of rats through increasing phosphorylation in the AMPK pathway, similar to the effects of exercise.

Ginsenoside Rb1 inhibits monoiodoacetate-induced osteoarthritis in postmenopausal rats through prevention of cartilage degradation

  • Aravinthan, Adithan;Hossain, Mohammad Amjad;Kim, Bumseok;Kang, Chang-Won;Kim, Nam Soo;Hwang, Ki-Chul;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.287-294
    • /
    • 2021
  • Background: Ginsenoside Rb1 (G-Rb1), one of the major active compounds in Panax ginseng, has already been shown to reduce inflammation in various diseases. Osteoarthritis (OA) has traditionally been considered a degenerative disease with degradation of joint articular cartilage. However, recent studies have shown the association of inflammation with OA. In the present study, we investigated whether Rb1 had an antiinflammatory effect on monoiodoacetate (MIA)-induced OA in ovariectomized rats as a model of postmenopausal arthritis. Methods: G-Rb1 at a dosage of 3 and 10 ㎍/kg body weight was administered every 3 days intraarticularly for a period of 4 weeks to observe antiarthritic effects. Diclofenac (10 mg/kg) served as a positive control. Results: The administration of Rb1 significantly ameliorated OA inflammatory symptoms and reduced serum levels of inflammatory cytokines. Furthermore, G-Rb1 administration considerably enhanced the expression of bone morphogenetic protein-2 and collagen 2A and reduced the levels of matrix metalloproteinase-13 genes, indicating a chondroprotective effect of G-Rb1. G-Rb1 also significantly reduced the expression of several inflammatory cytokines/chemokines (interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)/CCL-2, interleukin [IL]-1β, and IL-6). Histological analysis demonstrated that G-Rb1 significantly attenuated the pathological changes in MIA-induced OA in ovariectomized rats. Safranin O and toluidine blue staining further demonstrated that G-Rb1 effectively prevented the degradation of cartilage and glycosaminoglycans, respectively. Conclusion: Overall, our results suggest that G-Rb1 exerts cartilage protective effect on MIA-induced ovariectomized OA rats, by inhibiting inflammatory mediators such as IL-6, IL-1β, MCP-1/CCL-2, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). These results shed a light on possible therapeutic application of G-Rb1 in OA.

Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway

  • Xin, Chun;Quan, Hui;Kim, Joung-Min;Hur, Young-Hoe;Shin, Jae-Yun;Bae, Hong-Beom;Choi, Jeong-Il
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.394-401
    • /
    • 2019
  • Background: Ginsenoside Rb1, a triterpene saponin, is derived from the Panax ginseng root and has potent antiinflammatory activity. In this study, we determined if Rb1 can increase macrophage phagocytosis and elucidated the underlying mechanisms. Methods: To measure macrophage phagocytosis, mouse peritoneal macrophages or RAW 264.7 cells were cultured with fluorescein isothiocyanate-conjugated Escherichia coli, and the phagocytic index was determined by flow cytometry. Western blot analyses were performed. Results: Ginsenoside Rb1 increased macrophage phagocytosis and phosphorylation of p38 mitogenactivated protein kinase (MAPK), but inhibition of p38 MAPK activity with SB203580 decreased the phagocytic ability of macrophages. Rb1 also increased Akt phosphorylation, which was suppressed by LY294002, a phosphoinositide 3-kinase inhibitor. Rb1-induced Akt phosphorylation was inhibited by SB203580, (5Z)-7-oxozeaenol, and small-interfering RNA (siRNA)-mediated knockdown of $p38{\alpha}$ MAPK in macrophages. However, Rb1-induced p38 MAPK phosphorylation was not blocked by LY294002 or siRNA-mediated knockdown of Akt. The inhibition of Akt activation with siRNA or LY294002 also inhibited the Rb1-induced increase in phagocytosis. Rb1 increased macrophage phagocytosis of IgG-opsonized beads but not unopsonized beads. The phosphorylation of p21 activated kinase 1/2 and actin polymerization induced by IgG-opsonized beads and Rb1 were inhibited by SB203580 and LY294002. Intraperitoneal injection of Rb1 increased phosphorylation of p38 MAPK and Akt and the phagocytosis of bacteria in bronchoalveolar cells. Conclusion: These results suggest that ginsenoside Rb1 enhances the phagocytic capacity of macrophages for bacteria via activation of the p38/Akt pathway. Rb1 may be a useful pharmacological adjuvant for the treatment of bacterial infections in clinically relevant conditions.

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

Conversion of Ginseng Saponin with the Enzyme Produced by Rhizopus sp. (Part 1) Confirmation of Conversion of Ginsenoside- Rb$_1$to Ginsenoside-Rd (Rhizopus sp.가 생산하는 효소에 의한 인삼 Saponin의 전환 (제1보) Ginsenoside-Rb$_1$에서 Ginsenoside-Rd로의 전환확인)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.4
    • /
    • pp.267-273
    • /
    • 1982
  • Among 12 kinds of ginsenosides in ginseng saponin, ginsenoside-Rb$_1$was contained the most abundantly. But ginsenoside-Rd which is similar to ginsenoside-Rb$_1$in structure, was known to be superior to ginsenoside-Rb$_1$pharmaceutically. In order to convert ginsenoside-Rb$_1$into ginsenoside-Rd by microbial enzyme treatment, a Rhizopus sp. was selected among various strais of molds found in rotten ginseng roots. Enzyme was prepared from the extract of wheat bran koji culture by ammonium sulfate precipitation (1.0 sat'd) and succeeding ammonium sulfate fractionation method (0.6-0.9 sat'd). For the purpose of use as substrate, saponins were purified by the several purification steps from alcohol extract of red ginseng roots. We obtained the total saponin which was composed of 36.5% of ginsenoside Rb$_1$, 12.2% of ginsenoside-Rd and other ginsenosides. For increase of ginsenoside-Rb$_1$ component ratio, we also obtained further purified ginsenoside-Rb group saponin containing 54.5% of ginsenoside-Rb$_1$, 1.1% of ginsenoside- Rd and other ginsenosides from purified the total saponin. In the enzymatic reaction system including the total saponin or the ginsenoside-Rb group saponin, we confirmed the specific conversion of ginsenoside-Rb$_1$to ginsenoside-Rd proportionally and no change of any other ginsenoside patterns by thin layer chromatography and high performance liquid chromatography.

  • PDF

Effects of Hydrocolloids on the Quality of Protein and Transglutaminase Added Gluten-free Rice Bread (단백질과 트란스글루타미나제 첨가 글루텐 프리 쌀빵의 품질에 대한 친수콜로이드의 효과)

  • Hwang, Sun Ok;Kim, Ji Myoung;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.198-208
    • /
    • 2017
  • Purpose: To improve the quality of basic gluten-free rice bread composed of white rice flour, salt, sugar, yeast, skim milk powder, olive oil, and water, the effects of transglutaminase (TGase), whey protein (WP), propylene glycol alginate (PGA), and hydroxypropylmethylcelluose (HPMC) were investigated. Methods: TGase, WP, PGA, and HPMC were added to rice flour cumulatively. The pasting properties of rice flour blends as well as volume, shape, color value, textural properties and sensory evaluation of basic rice bread (RB1) RB1+TGase (RB2), RB1+TGase+WP (RB3), RB1+TGase+WP+PGA (RB4), and RB1+TGase+WP+PGA+HPMC (RB5) were compared. Results: Consistency of rice batter increased upon addition of TGase, WP and PGA, and RB3 and RB4 had higher specific volumes than others. PGA improved volume, crumb air cell uniformity, and resilience but lowered elasticity and moistness of RB. HPMC increased, hardness, moistness and softness, and slightly reduced volume. Conclusion: Therefore, it is suggested that hydrocolloids, PGA and HPMC may be necessary to improve volume, crumb structure, textural properties and overall eating quality of gluten-free rice bread.

Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination

  • Oh Wook Kwon;Dalnim Kim;Eugene Koh;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.319-328
    • /
    • 2023
  • Background: Demyelination has been observed in neurological disorders, motivating researchers to search for components for enhancing remyelination. Previously we found that Rb1, a major ginsenoside in Korean Red Ginseng (KRG), enhances myelin formation. However, it has not been studied whether Rb1 or KRG function in remyelination after demyelination in vivo. Methods: Mice were fed 0.2% cuprizone-containing chow for 5 weeks and returned to normal chow with daily oral injection of vehicle, KRG, or Rb1 for 3 weeks. Brain sections were stained with luxol fast blue (LFB) staining or immunohistochemistry. Primary oligodendrocyte or astrocyte cultures were subject to normal or stress condition with KRG or Rb1 treatment to measure gene expressions of myelin, endoplasmic reticulum (ER) stress, antioxidants and leukemia inhibitory factor (LIF). Results: Compared to the vehicle, KRG or Rb1 increased myelin levels at week 6.5 but not 8, when measured by the LFB+ or GST-pi+ area within the corpus callosum. The levels of oligodendrocyte precursor cells, astrocytes, and microglia were high at week 5, and reduced afterwards but not changed by KRG or Rb1. In primary oligodendrocyte cultures, KRG or Rb1 increased expression of myelin genes, ER stress markers, and antioxidants. Interestingly, under cuprizone treatment, elevated ER stress markers were counteracted by KRG or Rb1. Under rotenone treatment, reduced myelin gene expressions were recovered by Rb1. In primary astrocyte cultures, KRG or Rb1 decreased LIF expression. Conclusion: KRG and Rb1 may improve myelin regeneration during the remyelination phase in vivo, potentially by directly promoting myelin gene expression.

Specific Conversion of Ginseng Saponin by the Enzyme of Rhizopus japonicus (Rhizopus japonicus의 효소(酵素)에 의한 인삼(人蔘) 사포닌의 선택적(選擇的) 전환(轉換))

  • Kim, Sang-Dal;Seu, Jung-Hwn
    • The Korean Journal of Mycology
    • /
    • v.14 no.3
    • /
    • pp.195-200
    • /
    • 1986
  • The enzyme produced by a strain of Rhizopus japonicus was able to covert selectively ginsenoside $Rb_1$ which was the most abundant ginseng saponin, into ginsenoside Rd which was known to be superior to ginsenoside $Rb_1$ pharmaceutically. This specific conversion of ginsenoside $Rb_1$ without any change of other ginsenoside patterns was confirmed by thin layer chromatography and high performance liquid chromatograpy quantitatively. The amount of ginsenoside Rd was increased to 4.8 and 34.7 folds by enzymatic conversion of ginsenoside $Rb_1$ in total saponin and ginsenoside Rb group saponin, respectively. The increased amount of ginsenoside Rd corresponded to total amount of released glucose and decreased amount of ginsenoside $Rb_1$ accurately.

  • PDF