Browse > Article
http://dx.doi.org/10.1016/j.jgr.2020.01.004

Ginsenoside Rb1 inhibits monoiodoacetate-induced osteoarthritis in postmenopausal rats through prevention of cartilage degradation  

Aravinthan, Adithan (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
Hossain, Mohammad Amjad (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
Kim, Bumseok (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
Kang, Chang-Won (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
Kim, Nam Soo (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
Hwang, Ki-Chul (Department of Medicine, College of Medicine, Catholic Kwandong University)
Kim, Jong-Hoon (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
Publication Information
Journal of Ginseng Research / v.45, no.2, 2021 , pp. 287-294 More about this Journal
Abstract
Background: Ginsenoside Rb1 (G-Rb1), one of the major active compounds in Panax ginseng, has already been shown to reduce inflammation in various diseases. Osteoarthritis (OA) has traditionally been considered a degenerative disease with degradation of joint articular cartilage. However, recent studies have shown the association of inflammation with OA. In the present study, we investigated whether Rb1 had an antiinflammatory effect on monoiodoacetate (MIA)-induced OA in ovariectomized rats as a model of postmenopausal arthritis. Methods: G-Rb1 at a dosage of 3 and 10 ㎍/kg body weight was administered every 3 days intraarticularly for a period of 4 weeks to observe antiarthritic effects. Diclofenac (10 mg/kg) served as a positive control. Results: The administration of Rb1 significantly ameliorated OA inflammatory symptoms and reduced serum levels of inflammatory cytokines. Furthermore, G-Rb1 administration considerably enhanced the expression of bone morphogenetic protein-2 and collagen 2A and reduced the levels of matrix metalloproteinase-13 genes, indicating a chondroprotective effect of G-Rb1. G-Rb1 also significantly reduced the expression of several inflammatory cytokines/chemokines (interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)/CCL-2, interleukin [IL]-1β, and IL-6). Histological analysis demonstrated that G-Rb1 significantly attenuated the pathological changes in MIA-induced OA in ovariectomized rats. Safranin O and toluidine blue staining further demonstrated that G-Rb1 effectively prevented the degradation of cartilage and glycosaminoglycans, respectively. Conclusion: Overall, our results suggest that G-Rb1 exerts cartilage protective effect on MIA-induced ovariectomized OA rats, by inhibiting inflammatory mediators such as IL-6, IL-1β, MCP-1/CCL-2, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). These results shed a light on possible therapeutic application of G-Rb1 in OA.
Keywords
Ginsenoside-Rb1; Hstological analysis; Monoiodoacetate; Ovariectomy; Osteoarthritis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mankin H, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. The Journal of bone and joint surgery. American 1971;53:523-37.
2 Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicologic Pathol 2003;31:619-24.   DOI
3 Hashimoto R, Yu J, Koizumi H, Ouchi Y, Okabe T. Ginsenoside Rb1 prevents MPP+-induced apoptosis in PC12 cells by stimulating estrogen receptors with consequent activation of ERK1/2, Akt and inhibition of SAPK/JNK, p38 MAPK. Evidence-based complementary and alternative medicine. eCAM 2012:2012.
4 Cheng W, Wu D, Zuo Q, Wang Z, Fan W. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes. Int Orthopaedics 2013;37:2065-70.   DOI
5 Abramson SB, Attur M, Amin AR, Clancy R. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Current Rheumatology Reports 2001;3:535-41.   DOI
6 Zhang L, Zhu M, Li M, Du Y, Duan S, Huang Y, et al. Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-γ/NF-κB signal pathway. Oncotarget 2017;8:55384.   DOI
7 Pan R, Dai Y, Gao X, Xia Y. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Inter Immunopharmacol 2009;9:859-69.   DOI
8 Page C, Smale S, Carty S, Amos N, Lauder S, Goodfellow R, et al. Interferon-γ inhibits interleukin-1β-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Res Ther 2010;12(2010):R49.   DOI
9 Kim S-K, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35:389.   DOI
10 Radad K, Gille G, Moldzio R, Saito H, Rausch W-D. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res 2004;1021:41-53.   DOI
11 Kim HA, Kim S, Chang SH, Hwang HJ, Choi Y-n. Anti-arthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice. Int Immunopharmacology 2007;7:1286-91.   DOI
12 Endale M, Im EJ, Lee JY, Kim SD, Yayeh T, Song Y-B, et al. Korean red ginseng saponin fraction rich in ginsenoside-Rb1, Rc and Rb2 attenuates the severity of mouse collagen-induced arthritis. Mediat Inflam 2014;2014.
13 Wang W, Zeng L, Wang Z-M, Zhang S, Rong X-F, Li R-H. Ginsenoside Rb1 inhibits matrix metalloproteinase 13 through down-regulating Notch signaling pathway in osteoarthritis. Exp Biol Med 2015;240:1614-21.   DOI
14 Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM, et al. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 2004;6:R169.   DOI
15 Park JG, Yi Y-S, Hong YH, Yoo S, Han SY, Kim E, et al. Tabetri™(Tabebuia avellanedae ethanol extract) ameliorates osteoarthritis symptoms induced by monoiodoacetate through its Anti-Inflammatory and Chondroprotective Activities. Mediat Inflamm 2017;2017.
16 Kim Y, Kim E-h, Lee KS, Lee K, Park SH, Na SH, Ko C, Kim J, Yooon YW. The effects of intra-articular resiniferatoxin on monosodium iodoacetate-induced osteoarthritic pain in rats. Korean J Physiol Pharmacol 2016;20:129-36.   DOI
17 Bendele A. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 2001;1:363-76.
18 Schuerwegh A, Dombrecht E, Stevens W, Van Offel J, Bridts C, De Clerck L. Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis Cartilage 2003;11:681-7.   DOI
19 Charlier E, Relic B, Deroyer C, Malaise O, Neuville S, Collee J, Malaise MG, De Seny D. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci 2016;17:2146.   DOI
20 Hame SL, Alexander RA. Knee osteoarthritis in women. Curr Rev Musculoskel Med 2013;6:182-7.   DOI
21 Yang PY, Tang CC, Chang YC, Huang SY, Hsieh SP, Fan SS, et al. Effects of tibolone on osteoarthritis in ovariectomized rats: association with nociceptive pain behaviour. Eur J Pain 2014;18:680-90.   DOI
22 Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 2010;6:625.   DOI
23 Tung JT, Arnold CE, Alexander LH, Yuzbasiyan-Gurkan V, Venta PJ, Richardson DW, et al. Evaluation of the influence of prostaglandin E2 on recombinant equine interleukin-1β-stimulated matrix metalloproteinases 1, 3, and 13 and tissue inhibitor of matrix metalloproteinase 1 expression in equine chondrocyte cultures. Am J Vet Res 2002;63:987-93.   DOI
24 Kim JH, Yi Y-S, Kim M-Y, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43.   DOI
25 Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage 2005;13:769-81.   DOI
26 Xia B, Chen D, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogeneis: a review of molecular mechanisms. Calcif Tissue Int 2014;95:495-505.   DOI
27 Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflam 2014:2014.
28 Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol 2007;170:427-35.   DOI
29 Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001;134:541-9.   DOI
30 Gong Y-S, Chen J, Zhang Q-Z, Zhang J-T. Effect of 17b-oestradiol and ginsenoside on osteoporosis in ovariectomised rats. J Asian Nat Prod Res 2006;8:649-56.   DOI
31 Kong P, Chen G, Jiang A, Wang Y, Song C, Zhuang J, et al. Sesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway. Oncotarget 2016;7:83720.   DOI
32 Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI. Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 2017;1401:114-35.   DOI
33 O'Connor MI. Osteoarthritis of the hip and knee: sex and gender differences. Orthopedic Clinics 2006;37:559-68.