• Title/Summary/Keyword: $PbWO_{4}$

Search Result 31, Processing Time 0.032 seconds

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals

  • Yeom, Tae Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.107-114
    • /
    • 2018
  • In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.

The $PbWO_{4}:Nb$ single crystal growth and its optical properties ($PbWO_{4}:Nb$ 단결정의 성장과 그 광학적 특성)

  • 장경동;김도형;양희선;이상걸;박효열;이진호;이동욱;이상윤
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • High quality pure and Nb-doped $PbWO_{4}$ Single Crystal were grown from a 50 %~50 % mixture of Lead oxide (PbO) and Tungsten oxide $(WO_{3})$ by Czochralski method in Iridium crucible. The stoichiometric deviation correspond to the selective loss of the crystal constituents is found to be responsible for the yellowish coloration of $PbWO_{4}$. Through the X-ray powder diffraction experiment, we have investigated the lattice constant variations of each $PbWO_{4}$ crystals. We also present information on their photoluminescence (PL), optical absoption properties and Raman spectra. The temperature dependence of PL intensity and FWHM (Full Width Half Maximum) were measured in the temperature range 10 K~300 K. One observes a slight temperature dependence in the low temperature region and PL intensity decreases over 200 K by thermal quenching. The activation energy, Huang-Rhys coupling constant and inhomogenious brodenning acquired from their temperature dependence.

  • PDF

Microstructure and Dielectric Properties in $40Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3-30Pb(Mg_{1/2}W_{1/2})O}3$ Ceramics with Excess $91PbO-9WO_3$ Addition ($91PbO-9WO_3$가 과잉첨가된 $40Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3-30Pb(Mg_{1/2}W_{1/2})O}3$계 세라믹스의 미세구조와 유전특성)

  • 길영배;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.281-288
    • /
    • 1997
  • The effects of 0 to 6 mol% excess 91PbO-9WO3 addition on the microstructure and the dielectric pro-perties in 40Pb(Mg1/3Nb2/3)O3-30PbTiO3-30Pb(Mg1/2W1/2)O3 ternary system were investigated. Excess 91PbO-9WO3 addition enhanced densification at relatively lower temperature due to the formation of liquid phase. The dielectric constant of the specimen with standard composition was 16,400 and that of specimen with 1 mol% excess additive was the maximum of 18,500. And more than 2 mol% excess addition decreased dielec-tric constant. Specimens with 2~4 mol% 91PbO-9WO3 addition showed dual peak maxima in the tem-perature dependence of dielectric constant. In the specimens which have more than 5 mol% excess addition a new phase with W-rich composition was formed at grain boundary.

  • PDF

Effects of CuO and ${B_2}{O_3}$Additions on Microwave Dielectric Properties of $PbWO_4$-$TiO_2$Ceramic (CuO ${B_2}{O_3}$첨가에 따른 $PbWO_4$-$TiO_2$세라믹스의 마이크로파 유전특성)

  • 최병훈;이경호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1046-1054
    • /
    • 2001
  • Effects of B$_2$O$_3$and CuO addition on the microwave dielectric properties of the PbWO$_4$-TiO$_2$ceramics were investigated in order to use this material as an LTCC material for fabrication of a multilayered RF passive components module. We found that PbWO$_4$could be used as an LTCC material because of its low sintering temperature (8$50^{\circ}C$) and fairy good microwave dielectric properties($\varepsilon$$_{r}$=21.5, Q$\times$f$_{0}$=37200 GHz and $\tau$$_{f}$ =-31 ppm/$^{\circ}C$). In order to stabilize $\tau$$_{f}$ of PbWO$_4$, TiO$_2$was added to the PbWO$_4$and the mixture was sintered at 8$50^{\circ}C$. A near zero $\tau$$_{f}$ value (+0.2 ppm/$^{\circ}C$) was obtained with 8.7 mol% TiO$_2$addition. $\varepsilon$r and Q$\times$f$_{0}$ values were 22.3 and 21400 GHz, respectively. It was believed that the decrement of Q$\times$f$_{0}$ value with TiO$_2$addition was resulted from increasing grain boundary. In order to improve Q$\times$f$_{0}$, various amounts of B$_2$O$_3$and CuO were added to the 0.913PbWO$_4$-0.087TiO$_2$mixture. The optimum amount of CuO was 0.05 wt%. At this addition, the 0.913PbWO$_4$-0.087TiO$_2$ceramic showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$ =-2.2ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32900 GHz after sintered at 8$50^{\circ}C$. In case of B$_2$O$_3$addition, the optimum amount range was 1.0~2.5 wt% at which we could obtain following results; $\varepsilon$$_{r}$=20.3~22.1, Q$\times$f$_{0}$=48700~54700 GHz, and $\tau$$_{f}$ =+2.4~+8.2ppm/$^{\circ}C$.

  • PDF

Ground State Energy of Gd3+ Paramagnetic Ion in PbWO4 : Gd Single Crystal (PbWO4 : Gd 단결정 내의 Gd3+ 상자성 이온에 대한 바닥 상태 에너지)

  • Yeom, Tae Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2016
  • Ground state energy levels of $Gd^{3+}$ ion (effective spin S = 7/2) in $PbWO_4$ single crystal doped with $Gd^{3+}$ paramagnetic impurity at tetragonal symmetry are calculated with spectroscopic splitting parameters and zero field splitting parameters using by effective spin Hamiltonian. It turns out that the zero field splitting energies of $Gd^{3+}$ ion were the same regardless of the directions of $PbWO_4$ : Gd single crystal. The calculated energy differences for ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, and ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > transitions were 6.9574 GHz, 6.9219 GHz, and 15.8704 GHz, respectively when the applied magnetic field is zero. The calculated energy level diagrams were different for different directions of applied magnetic field. For B // a- and c-axis, the energy level diagrams are calculated and discussed.

Microwave Dielectric Properties of $PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ Ceramics ($PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ 세라믹의 고주파 유전특성)

  • 이경호;최병훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.143-148
    • /
    • 2001
  • PbWO$_4$ can be densified at 85$0^{\circ}C$ and it shows fairy good microwave dielectric properties; dielectric constant($\varepsilon$$_{r}$) of 21.5, quality factor(Q $\times$f$_{0}$) of 37,224 GHz, and temperature coefficient of resonant frequency($\tau$/suf f/) of -31ppm/$^{\circ}C$. Due to its low sintering temperature, PbWO$_4$ can be used as a multilayered chip component at microwave frequency with high electrical performance by using high conductive electrode metals such as Ag and Cu. However, in order to use this material for microwave communication devices, the $\tau$$_{f}$ of PbWO$_4$ must be stabilized to near zero with high Q$\times$f$_{0}$. In present study, PbWO$_4$ was modified by adding TiO$_2$, B$_2$O$_3$, and CuO in order to improve the microwave dielectric properties without increasing the sintering temperature. The addition of TiO$_2$ increased the $\tau$$_{f}$ and $\varepsilon$$_{r}$, due to its high rr(200ppm/$^{\circ}C$) and $\varepsilon$$_{r}$(100). However, the addition of TiO$_2$ reduced the Q$\times$f$_{0}$ value. When the mot ratio of PbWO$_4$ and TiO$_2$ was 0.913:7.087, near zero $\tau$$_{f}$(0.2ppm/$^{\circ}C$) was obtaibed with $\varepsilon$$_{r}$=22.3, and Q$\times$f/$_{0}$=21,443GHz. With this composition, various amount of B$_2$O$_3$ and CuO were added in order to improve the quality factor. The addition, of B$_2$O$_3$ decreased the $\varepsilon$$_{r}$. However, increased Q$\times$f$_{0}$ and $\tau$$_{f}$. When 2.5 wt% of B$_2$O$_3$ was added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ =8.2, $\varepsilon$$_{r}$=20.3, Q$\times$f$_{0}$=54784 GHz. When CuO added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ was continuously decreased. And $\varepsilon$$_{r}$ . and Q$\times$f$_{0}$ were increased up to 1.0 wt% then decreased. At 0.1 wt% of CuO addition, the 0.913PbWO$_4$-7.087Ti0$_2$ Ceramic Showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$=4.4ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32,932 GHz.> 0/=32,932 GHz.X>=32,932 GHz.> 0/=32,932 GHz.

  • PDF

A Study on the Tungstate-Sensing Electrodes (Tungstate Ion 감응 전극에 관한 연구)

  • Gwon-Shik Ihn;Jung-hwa Lee;R. P. Buck
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • Three component $Ag_2S-PbS-PbWO_4$ electrodes have been prepared and evaluated for sensitivity to tungstate. The 51.71 : 16.64 : 31.65(w/w%) composition is superior in terms of potentiometric response, stability, rapidity of response and reproducibility. Testing was done over the concentration range $10^{-1}~10^{-4}M WO_4^{2-}$ in $0.1F-NH_4Ac-NH_4OH$ buffer at pH 8.00 with constant ionic strength. The quality of response is similar to that of corresponding phosphate-sensing electrode. Many common ions interfere.

  • PDF

Dielectric properties 40Pb$(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3-30Pb(Mg_{1/2}W_{1/2})O_3$ ceramics (40Pb$(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3-30Pb(Mg_{1/2}W_{1/2})O_3$ 세라믹스의 유전특성)

  • 길영배;임대영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2000
  • Ternary system of 40PMN-30PT-30PMW was prepared by using different reaction process. The PMN-PT was synthesized firstly, then it reacted to $PbWO_4$ as PbO and $WO_3$ sources. The dielectric constants were dependent on the density of sintered body and decreased with sintering temperature above $950^{\circ}C$. The highest dielectric constant was 24,000 in a sample sintered at $950^{\circ}C$ with the dielectric loss of 3 %. The temperature dependence of the dielectric constant were decreased with the increase of sintering temperature due to the appearance of double peak maxima. The lowest change in dielectric constant was -37-0 % from -55 to $125^{\circ}C$in a sample sintered at $1150^{\circ}C$ with dielectric constant of 9,900 at room temperature.

  • PDF

Microstructure and Dielectric Properties in $30Pb(Mg_{1/3}Nb_{2/3})O_3-20PbTiO_3-50Pb(Mg_{1/2}W_{1/2})O_3$ Ceramics with Excess MgO Addition (MgO가 과잉첨가된 $30Pb(Mg_{1/3}Nb_{2/3})O_3-20PbTiO_3-50Pb(Mg_{1/2}W_{1/2})O_3$계 세라믹스의 미세구조와 유전특성)

  • 길영배;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.31-36
    • /
    • 1997
  • The effects of 0 to 10mol% excess MgO addition on the microstructure and dielectric properties in 30Pb(Mg1/3Nb2/3)O3-20PbTiO3-50Pb(Mg1/2W1/2)O3 ternary system were investigated. Samples were prepared by mixed oxide and precursor methods to compare the role of excess MgO. Excess MgO enhanced grain growth and increased dielectric constant. The dielectric constant and tesmperature dependence of dielectric constant of the sample sintered at 100$0^{\circ}C$ with 5mol% MgO were above 5,000 and +25% to -50% from - 55$^{\circ}C$ to 1$25^{\circ}C$, respectively. For these specimens the phases percent were mainly perovskite and Pb2WO5, which was confirmed by XRD analysis. Also the amount of cubic pyrochlore Pb3Nb4O13 and PbWO4 were de-creased with sintering temperature and MgO addition. BSE image showed the chemical inhomogeneous dis-tribution. Crystal phase formed at each sintering temperature and the chemical inhomogeneous distribution caused the decrease of the temperature dependence of dielectric constant.

  • PDF