Browse > Article
http://dx.doi.org/10.6564/JKMRS.2018.22.4.107

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals  

Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.22, no.4, 2018 , pp. 107-114 More about this Journal
Abstract
In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.
Keywords
$PbWO_4$ single crystal; $Mn^{2+}$ and $Dy^{3+}$ impurities; $^{207}Pb$ NMR; spin-lattice relaxation time; activation energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M.V. Korzhik, O.V. Missevitch, V.B. Pavlenko, A.A. Fedorov, A.N. Annenkov, and V.L. Kostylev, Nucl. Instrum. Methods Phys. Res. A 365, 291 (1995)   DOI
2 C. Ye, J. Liao, P. Shao, and J. Xie, Nucl. Instrum. Methods. Phys. Res. A 566, 757 (2006)   DOI
3 R.W. Novotny, W.M. Doring, V. Dormenev, A. Hofstaetter, M. Korzhik, T. Kuske, S. Lugert, and O. Missevitch, IEEE Nucl. Sci. Symp. Conf. Rec., Art 5402124, 2036 (2009)
4 S. Burachas, M. Ippolitov, V. Manko, S. Nikulin, A. Vasiliev, A. Apanasenko, A. Vasiliev, A. Uzunian, and G. Tamulaitis, Radiat. Meas. 45, 83 (2010)   DOI
5 A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000)   DOI
6 I. S. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, S. Y. Beloglovski, S. F. Burachas, Y. A. Saveliev, and A. M. Tseitline, Opt. Mater. 31, 94 (2008)   DOI
7 W.B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, Opt. Commun. 194, 401 (2001)   DOI
8 S. Zazubovich, and M. Nikl, Phys. State Solid (b) 247, 385 (2010)   DOI
9 R.Y. Zhu, D.A. Ma, H.B. Newman, C.L.Woody, J.A. Kierstead, S.P. Stoll, and P.W. Levy, Nucl. Instr. Meth. A 376, 319 (1996)   DOI
10 A. Annenkov, E. Auffray, M.V. Korzhik, P. Lecoq, and J.-P. Peigneux, Phys. Status Solidi A 170, 47 (1998)   DOI
11 B. Han, X. Feng, G. Hu, Y. Zhang, and Z. Yin, J. Appl. Phys. 86, 3571 (1999)   DOI
12 J. M. Moreau, Ph. Galez, J.P. Peigneux, and M.V. Korzhik, J. Alloys Comp. 46, 238 (1996)
13 J. M. Moreau, R. E. Gladyshevskii, Ph. Galez, J.P. Peigneux, and M.V. Korzhik, J. Alloys Comp. 284, 104 (1999)   DOI
14 M. Kobayashi, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Takano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, and M. Diemoz, Nucl. Instr. Meth. A 434, 412 (1999)   DOI
15 Y. Huang, W. Zhu, X. Feng, Z. Liu, Z. Man, and Z. Yin, Opt. Mater. 23, 443 (2003)   DOI
16 M. Kobayashi, Y. Ushki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Takano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, M. Diemoz, A. Vedda, and M. Martini, Nucl. Instrum. Methods Phys. Res. A 465, 428 (2001)   DOI
17 A. A. Kaminskii, C.L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000)   DOI
18 L. Z. Leciejewitz, Z. Kristallogr. 121, 158 (1965)   DOI
19 A. Abragam, "The Principles of Nuclear Magnetism" Chaps. VI, VI1, and IX, Oxford Univ. Press, Oxford, 1961
20 W. W. Simmons, W. J. O'Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962)   DOI
21 W. E. Blumberg, Phys. Rev. 119, 79 (1960)   DOI
22 A. R. Lim and K. Y. Lim, Solid State Sci. 31, 70 (2014)   DOI
23 R. L. Mieher, Phys. Rev. 125, 1537 (1962)   DOI
24 J. Van Kranendonk, Physica 20, 781 (1954)   DOI
25 A. R. Lim, AIP Adv. 6, 35307 (2016)   DOI
26 M. Nikl, Phys. Status Solidi A 178, 595 (2000)   DOI
27 Compact Muon Solenoid Technical Proposal, CERN/LHCC 94-38, LHCC, P1 (1994)
28 P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 537, 15 (2005)   DOI
29 M. Kobayashi, M. Ishii, Y. Usuki, and H. Yahagi, Nucl. Instrum. Methods Phys. Res. A 333, 429 (1993)   DOI
30 A. N. Caruso, J. Phys.: Condens. Matter 22, 443201 (2010)   DOI
31 M. Kobayashi, M. Ishii, and Y. Usuki, Nucl. Instrum. Methods Phys. Res. A 406, 442 (1998)   DOI
32 M. Nikl, P. Bohacek, A. Vedda, M. Martini, G.P. Pazzi, P. Fabeni, and M. Kobayashi, Phys. Status Solidi A 182, R3 (2000)   DOI
33 A.A. Annenkov, A.E. Borisevich, A. Hofstaetter, M.V. Korzhik, P. Lecoq, V.D. Ligun, O.V. Misevitch, R. Novotny, and J.P. Peigneux, Nucl. Instrum. Methods. Phys. Res. A 450, 71 (2000)   DOI
34 M. Kobayashi, Y. Usuki, M. Ishii, M. Itoh, and M. Nikl, Nucl. Instrum. Methods. Phys. Res. A 540, 381 (2005)   DOI
35 G.-H. Ren, X.-F. Chen, R.-H. Mao, and D.-Z. Shen, Acta Phys. Sin. 59, 4812 (2010)