• Title/Summary/Keyword: $PbTiO_3-CaTiO_3$ solid solution

Search Result 3, Processing Time 0.019 seconds

The Influence of PbO Content on the Crystallisation Characteristics and Dielectric Properties of Glass Frit for LTCC (LTCC용 Glass Frit의 결정화 특성 및 유전 특성에 대한 PbO 함량의 영향)

  • Park, Jeong-Hyun;Kim, Yong-Nam;Song, Kyu-Ho;Yoo, Jae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.438-445
    • /
    • 2002
  • In this study, the glass frit of $PbO-TiO-2-SiO_2-BaO-ZnO-Al_2O-3-CaO-B_2O_3-Bi_2O_3-MgO$ system was manufactured. The glass was melted at $1,400{\circ}C$, quenched and attrition-milled. The glass frit powder was pressed and fired for 2h at the range of $750~1,000{\circ}C$. The crystallization of glass frit began at about $750{\circ}$ and at low temperature, the main crystal phases were hexagonal celsian($BaAl_2Si_2O_8$) and alumina. As the firing temperature increased, the crystal phases of monoclinic celsian, zinc aluminate, zinc silicate, calcium titanium silicate and titania appeared. And the increase of firing temperature led to transformation of hexagonal celsian to monoclinic. The only glass frit containing 15wt% PbO had the crystal phase of solid solution of $PbTiO_3-CaTiO_3$. At the frequency of 1 MHz, the dielectric constant of glass frit crystallized was in the range of 11~16 and the dielectric loss less than 0.020. But the glass frit containing 15wt% PbO had the dielectric constant of 17~26 and loss of 0.010~0.015 because of crystal phase of solid solution of $PbTiO_3-CaTiO_3$.

Effects of $TiO_{2}$ Addition on the Microwave Dielectric Properties of ($Pb_{1-x}Ca_{x})ZrO_{3}$ Ceramics (($Pb_{1-x}Ca_{x})ZrO_{3}$ 세라믹스의 고주파 유전특성에 미치는 $TiO_{2}$의 영향)

  • 홍석경;손용배;김경용
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.5
    • /
    • pp.30-35
    • /
    • 1993
  • We have investigated microwave dielectric properties of TiO$_{2}$ added (Pb$_{1-x}$Ca$_{x}$)ZrO$_{3}$ Ceramics with x=0.33, 0.35, and 0.37 sintered at 1400$^{\circ}C$ for 2 h. For additions of up to 3wt% of TiO$_{2}$ in (Pb$_{0.63}$ Ca$_{0.37}$)ZrO$_{3}$ (x=0.37), TiO$_{2}$ was completely soluble in (Pb, Ca)ZrO3 phase and did not affect the grain size of ceramics. Dielectric constant and temperature coefficient of resonant frequency increased due to the formation of solid solution, whereas Q value decreased linearly as TiO$_{2}$ increased up to 1 wt%. However, the dielectric loss was very high as TiO$_{2}$ exceeded 2 wt%. It was also shown that as Ca ion content in 0.5 wt% TiO$_{2}$ added (Pb$_{1-x}$,Ca$_{x}$)ZrO$_{3}$ decreased from x=0.37 to x=0.33, dielectric constant increased and Q value decreased.

  • PDF

Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics (비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교)

  • Jung, Seungwoon;Lim, Ji-Ho;Jung, Han-Bo;Ji, Sung-Yub;Choi, Seunggon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).