• 제목/요약/키워드: $PO_4$-P (phosphate phosphorus)

검색결과 68건 처리시간 0.03초

바닷물을 이용한 struvite 형성으로 혐기성 소화액으로부터 질소, 인 회수 (Nitrogen and Phosphorus Recoveries from Anaerobic Digester Supernatant Using Seawater as Magnesium Source for Struvite Formation)

  • 김용범;안종화
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.387-391
    • /
    • 2015
  • This study was performed to evaluate the effect of pH (8-12) and molar ratio of magnesium and phosphate ($[Mg^{2+}]/[PO_4{^{3-}}]$) (0.6-1.4) on struvite crystallization of anaerobic digester supernatant using seawater as magnesium source. pH range of 9-10 is favorable for ammonium and phosphate recoveries. The recovery efficiency of ammonium was highest at $[Mg^{2+}]/[PO_4{^{3-}}]$ of 1.0 and pH 10. On the other hand, high phosphate recovery efficiency (> 99%) was achieved at ($[Mg^{2+}]/[PO_4{^{3-}}]$) of 1.4 and pH 10. The results demonstrated that seawater can be considered as low-cost magnesium source to recover phosphorus from anaerobic digester supernatant.

물과 토양에서 pH, PO4-P, 탁도 그리고 T-P 농도에 미치는 온도의 영향에 관한 연구 (A study on relationship of concentration of phosphorus, turbidity and pH with temperature in water and soil)

  • 민영홍;현대용;음철헌;정남현;강삼우;이승호
    • 분석과학
    • /
    • 제24권5호
    • /
    • pp.378-386
    • /
    • 2011
  • 본 연구는 호수바닥에 있는 침전물로부터 인의 용출 메커니즘을 규명하고자, 인이 물로 용출될때 미치는 온도의 영향을 조사하였다. 연구 결과를 보면, 온도가 증가하면 PO4-P가 평형에 빨리 도달하고, 평형농도가 증가하며, $PO_4$-P의 용출 증가로 인하여 pH가 감소한다. 즉, $PO_4$-P의 용출이 pH의 감소에 영향을 미침을 알 수 있었다. 탁도물질에서 용출된 $PO_4$-P는 물에 용존하며, 탁도물질에 흡착되지 않기 때문에 탁도의 변화에 관계없이 점진적인 증가를 나타냈지만, $PO_4$-P는 탁도에서 용출되기 때문에 탁도와 관련이 있다. 총인(Total phosphorous, T-P)은 용존성 $PO_4$-P와 탁도물질에 포함된 인을 포함하기 때문에 탁도의 변화에 직접 관련이 있음을 알 수 있었다. 온도가 감소하면 물의 밀도가 증가하여 탁도의 침전이 감소하기 때문에 탁도의 농도가 높아져 T-P 농도를 증가시키며, 온도가 증가하면 물의 밀도감소로 인하여 탁도물질의 침전이 용이해져서 탁도는 감소하지만 $PO_4$-P의 용출이 증가하여 T-P 농도가 증가했다. 따라서 동일 시간대의 T-P는 온도가 달라도 유사한 농도를 가졌다. 호수가 깊어지면 저층수의 온도가 감소하여 인의 용출이 감소하므로 이 메카니즘은 호수 바닥으로부터 물로 용출되는 인에 대하여 온도가 미치는 영향을 이해하는데에 중요하다.

영농기 필지논에서의 인 (P) 농도와 산화환원전위 (Eh)의 변화 특성 (Variation of Phosphorus Concentration and Redox Potential in a Paddy Field Plot During Growing Season)

  • 김영현;김진수;장훈
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.47-52
    • /
    • 2010
  • The purpose of this study is to investigate characteristics of total phosphorus (TP) and phosphate phosphorous ($PO_4$-P) concentrations in ponded water and redox potential (Eh) in paddy soil during the growing season. The TP and $PO_4$-P concentrations showed twice peak values after basal dressing and tillering fertilization. The ratio of $PO_4$-P to TP showed low values (0.07~0.18), indicating that most of phosphorus is particlulate. The $PO_4$-P concentrations significantly decreased with dissolved oxygen (DO) concentrations. The Eh showed high values (179~636 mV) under non-ponded aerobic condition, but low values (74~112 mV) under ponded anaerobic condition The TP and $PO_4$-P concentrations in ponded water increased shortly after tillering fertilization even if phosphorus was not applied. This may be due to the release of dissolved phosphorus from the bottom sediment and its associated algal and water flea blooms under anaerobic condition. Therefore, proper water management should be needed shortly after tillering fertilization.

감귤원 토양에서 분리한 인산염 가용화 미생물 Bacillus sphaericus PSB-13의 특성 (Characteristics of Bacillus sphaericus PSB-13 as Phosphate Solublizing Bacterium Isolated from Citrus Orchard Soil)

  • 좌재호;임한철;한승갑;전승종;서장선
    • 한국토양비료학회지
    • /
    • 제40권5호
    • /
    • pp.405-411
    • /
    • 2007
  • 본 연구는 감귤원 토양유형별로 고정되어 있는 난용성 인산염함량을 파악하고 이를 생물학적으로 이용하고자 인산가용화 우수미생물을 선발하여 특성을 조사하였다. 토양중 난용성 인산염의 형태별 분포는 Al-P>Ca-P>Fe-P 순으로 화산회토 토양이 비화산회토 보다 많았다. PDA-P배지를 이용하여 인산염 가용화능이 우수한 Bacillus sphaericus를 분리하였으며 pH 4~5와 $30^{\circ}C$에서 생육이 제일 좋았다. Bacillus sphaericus은 $AlPO_4$에서 324.5 ppm, $Ca_{10}(PO_4)_6(OH)_2$에서 334.8 ppm, $Ca_3(PO_4)_2$에서 207.0 ppm의 유리인산을 생성하였으며 인산효소활성은 $35^{\circ}C$에서 배양할 때 높았다. Bacillus sphaericus를 Bentonite 등 담체에 고정 후 온도를 달리하여 7개월 보존기간 동안 밀도변화를 조사한 결과 $10^5c.f.u.\;g^{-1}$ 수준과 인산가용화능을 유지하여 추후 생물비료로 이용이 가능할 것으로 기대된다.

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.

티타늄계열응집제를 이용한 하수 내 인 제거 (Phosphorus Removal from Municipal Wastewater Using Ti-based Coagulants)

  • 신소연;김종호;안종화
    • 대한환경공학회지
    • /
    • 제38권8호
    • /
    • pp.428-434
    • /
    • 2016
  • 본 연구에서는 하수 내 인 제거 시 티타늄계열 응집제의 인 제거특성을 알아보기 위해 알루미늄계열 응집제와 비교하였다. Jar-tester를 이용하여 다양한 OH/Ti 몰비(B값)의 응집제를 투여하여 실험을 진행하였다. 초기 인 농도가 증가할수록 처리 후 $PO_4-P$ 농도가 0.2 mg P/L 이하에 도달하기 위한 [Ti]/[P]는 감소하였다. T-P 제거효율은 응집제 주입량이 증가할수록 높아졌지만, 최고 제거효율에 도달한 후에는 B값에 관계없이 감소하였다. 반면에 $PO_4-P$ 제거율은 최고점에 도달한 후 B값에 상관없이 일정하게 유지하는 경향이 나타났다. 동일한 인 제거효율에서 Ti계열 응집제의 주입량은 Al계열 응집제보다 약 2배정도 높았다. 또한, Ti계열 응집제의 B값에 따라 인제거효율에 영향을 미쳤다.

인산가용화 사상균 Penicillium sp. PS-113의 고체배양 (Solid Culture of Phosphate-solubilizing Fungus, Penicillium sp. PS-113)

  • 강선철;최명철
    • 한국미생물·생명공학회지
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 1999
  • A fungus, Penicillium sp. PS-113, isolated from soil showed the high phosphate-solubilizing activity in patato dextrose broth-rock phosphate to produce free phosphates to the culture broth with the concentrations of 585 ppm against rock phosphate. In this medium, the optimum temperature and initial pH to solubilize rock phosphate were 30$^{\circ}C$ and pH 7.5, respectively. In order to make the mass production of the conidia from this fungus, we cultured in on various solid-based media like barley, corn, wheat, rice, rice bran, and compost. As a result, the fungus highly produced conidia ranging from 2.1 to $5.1{\times}10_9$ conidia/g${\cdot}$media on these solid media except compost-based medium, which was 0 times less than others. Effects of inoculation of the phosphate solubilizing fungus as a biofertilizer were studied in perlite-based pot cropped with Zea mays Suwon 19. Inoculation of Penicillium sp. PS-113 increased in plant height (1.4 times), plant weight (5.2~8.1 times) and root length (1.1~1.2 times) at 60-day cultivation, compared to Hogland solution either without $NH_4H_2PO_4$ or displace $NH_4H_2PO_4$ to powdered rock phosphate, a phosphorus source for plant growth.

  • PDF

알칼리-오존 동시 전처리된 잉여슬러지로부터 결정화를 이용한 고품질 외부탄 소원 회수 (Recovery of high quality external carbon sources using crystallization from pretreated excess activated sludge by alkali and ozone)

  • 서인석;김홍석;김병균;김연권
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.641-646
    • /
    • 2008
  • In this research, recovery of high quality organics from excess activated sludge and its potential as a external carbon sources for BNR process was studied. By simultaneous treatment of alkali and ozone, TSS concentration was reduced by 32%, and RBDCOD fraction was increased by 76.2%, and major constitute of produced organic were acetic acid and propionic acid. Also, nitrogen and phosphorus were greatly solubilized. However, because acid-hydrolyzable phosphorus(AHP) was major part of solubilized phosphorus, $NH_4{^+}-N$ and $PO_4{^3}-P$ concentration were insufficient for effective formation of crystal like as MAP(Magnesium Ammonium Phosphate) and hydroxyapatite. By placing BPR reactor before alkali-ozone treatment reactor, $PO_4{^3}-P$ concentration in pretreated sludge was increased by 1.8 times, and improved potential of phosphorus recovery by crystallization. In experiment of crystallization, hydroxyapatite formation was more easily applied than MAP. By hydroxyapatite formation, $SCOD/PO_4-P$ ratio was greatly increased from 32.7 at control to 141.9 at $Ca^{2+}/PO{_4}^{3-}-P$ mole ratio of 2.4. The results based on this study indicated that the proposed system configuration has potential to reduce the excess sludge production, to recover phosphorus in usable forms as well as utilize organics as a external carbon source in BNR process.

Stress Induced Phosphate Solubilization by Aspergillus awamori bxq33110 Isolated from Waste Mushroom Bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Song, June-Seob;Jang, Kab-Yeul;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제45권3호
    • /
    • pp.428-434
    • /
    • 2012
  • A fungal strain, capable of solubilizing insoluble phosphate under diverse temperature, pH and salt conditions was isolated from Waste Mushroom bed of Agaricus bisporus in South Korea. Based on 18S rRNA analysis, the strain was identified as Aspergillus awamori bxq33110. The strain showed maximum phosphate solubilization in AYG medium (525 ${\mu}g\;mL^{-1}$) followed by NBRIP medium (515 ${\mu}g\;mL^{-1}$). The strain solubilized $Ca_3(PO_4)_2$ to a greater extent and rock phosphate and $FePO_4$ to a certain extent. However $AlPO_4$ solubilizing ability of the strain was found to be very low. Glucose at the rate of 2% ($561{\mu}g\;mL^{-1}$) was found be the best carbon source for Aspergillus awamori bxq33110 to solubilize maximum amount of phosphate. However, no significant difference ($P{\leq}0.05$) in phosphorus solubilization was found between 1% and 2% glucose concentrations. $(NH_4)_2SO_4$ was the best nitrogen source for Aspergillus awamori bxq33110 followed by $NH_4Cl$ and $NH_4NO_3$. At pH 7, temperature $30^{\circ}C$ and 5% salt concentration (674 ${\mu}g\;mL^{-1}$) were found to be the optimal conditions for insoluble phosphate solubilization. However, strain Aspergillus awamori bxq33110 was shown to have the ability to solublize phosphate under different stress conditions at $30-40^{\circ}C$ temperature, pH 7-10 and 0-10% salt concentrations indicating it's potential to be used as bio-inoculants in different environmental conditions.

폐수내 질소 및 인 제거를 위한 struvite 결정화 최적조건 도출 (Estimation of the Optimum Factor of the Struvite Crystalization for the Nitrogen and Phosphorus Removal in WWTP)

  • 김지연;문용택;서인석;김병군
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.745-753
    • /
    • 2007
  • By struvite and hydroxyapatite crystallization, was high concentration of nitrogen and phosphorus in wastewater simultaneously. Particularly, removal of nitrogen and phosphate for crystallization have been applied to landfill leachates and animal wastewater. The purpose of this study is to decide the optimum struvite crystallization factors, sequence of $Mg^{2+}$ addition, pH control and the molar ratio of $Mg^{2+}$ over $PO_4^{3-}$. In conclusion, dosage of the magnesium followed by pH control formed magnesium hydroxide, so pH was decreased. Therefore, pH adjustment should followed by after magnesium dosage and then pH should be adjusted to 11. Over pH 10, it was not good for struvite crystallization efficiency by side reaction. Following of the $Mg^{2+}$ and the $PO_4^{3-}$ are dosed excessively, the removal efficiency of the $NH_4^+$ increased. A molar ratio of $Mg^{2+}:NH_4^+:PO_4^{3-}$, 1.3:1:1.3 was the most on effective for $NH_4^+$ removal at pH 9.5. But for the perfect removal $NH_4^+$, it is thought to be that molar ratio should be 2:1:2.