• Title/Summary/Keyword: $PM_{2.5}$ concentrations

Search Result 1,709, Processing Time 0.032 seconds

Comparison of PM2.5 Concentrations by Measurement Method (측정 방법에 따른 PM2.5 농도 비교)

  • Ghim, Young Sung;Choi, Yongjoo;Park, Jisoo;Kim, Pilho;Han, Yu Kyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.515-520
    • /
    • 2017
  • $PM_{2.5}$ concentrations were measured using a cyclone, impactor (the U.S. Environmental Protection Agency well impactor ninety-six, WINS) and optical particle counter (OPC) at a campus site located in Yongin for the period August 2014 through March 2017. The concentrations from cyclone (Y) were generally higher than those from impactor(X); the best-fit line was Y=1.22X+5.64. The ratios of $PM_{2.5}/PM_{10}$ ranged from 0.61 to 0.66 when $PM_{2.5}$ concentrations from cyclones in selected studies were converted into those from impactors using a regression equation in this study. The slope of the best-fit line between OPC and impactor was close to 1 at 0.95, while that between OPC and cyclone was 0.72. After sampling, the flow rate in the low-volume air sampler with cyclone decreased by 3% on average, which did not have a significant effect on measured concentrations.

Comparison of the fine particle concentrations in Seoul and other foreign mega-cities (서울과 외국 대도시의 미세입자 조성 비교)

  • Hong, Seon Yeh;Lee, Jung Jin;Lee, Ji Yeon;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Temporal trends of the PM10 and PM2.5 mass concentrations, and the concentrations of chemical species (sulfate, nitrate, ammonium, OC, and EC) in PM2.5 at Seoul are compared with the reported results from other mega cities in the world. The mass concentrations of PM10 and PM2.5 at Seoul show decreasing trend. However, the concentration levels are still higher than other cities except Beijing. The sulfate concentration at Seoul has decreased while those of nitrate and ammonium have increased. The concentrations of OC and EC show no apparent trend.

  • PDF

Comparison of Particulate Matter and Ammonia Emission in Different Types of Laying Hen Poultry Houses during Spring (봄철 산란계사 사육형태별 미세먼지 및 암모니아 농도 비교)

  • Hong, Eui-Chul;Kang, Bo-Seok;Kang, Hwan-Ku;Jeon, Jin-Joo;You, Are-Sun;Kim, Hyun-Soo;Son, Jiseon;Kim, Hee-Jin;Yun, Yeon-Seo
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.151-160
    • /
    • 2021
  • This study was conducted to determine the concentrations of particulate matter (PM) and NH3 emissions from different types of laying hens poultry houses during spring. The concentrations of PM and NH3 were measured three times (2-week intervals; March to May) in Floor-pen-, Aviary-, and Cage-type poultry houses. Overall, PM10 and PM2.5 concentrations were found to be low from 22:00 to 04:00. The PM10 and PM2.5 concentrations in Floor-pen and Cage houses were similar with no significant daily deviation. NH3 concentrations measured over 24 h at the center and end of Floor-pen house were relatively constant. Irrespective of measurement location, NH3 concentrations were the lowest in Floor-pen house. Moreover, NH3 concentrations were higher at the end of Floor-pen and Aviary houses than that at the center; however, lower concentrations of NH3 were detected at the end of Cage house. The concentrations of PM10 and PM2.5 around the poultry houses were 57.5 and 34.0 ㎍/m3, respectively, with the daily average PM10 and PM2.5 concentrations (4,730 and 447.7 ㎍/m3, respective) being the highest in Aviary house. The concentrations of NH3 at the center and end of Cage house were the highest at 12.0 and 9.31 ppm, respectively. Furthermore, in Cage house, the emission factor of NH3 was the lowest, whereas there was no significant difference on that of NH3. In conclusion, among the three types of poultry houses assessed, PM (PM10, PM2.5) concentrations were higher in Aviary house, whereas NH3 concentrations were higher in Cage house.

Seasonal Variations of Human Exposure to Residential Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Chuncheon (춘천의 가정에서 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소에 대한 계절적 노출 변동)

  • Kim He-Kap;Jung Kyung-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.57-69
    • /
    • 2006
  • Lately human exposure to fine particles smaller than $2.5{\mu}m$ in aerodynamic diameter ($PM_{2.5}$) has become a great concern in Korea due to their possible cause of elevated mortality, lung function decrements, and more frequent hospital admissions for asthma. This study was conducted to investigate seasonal variations of human exposure to residential $PM_{2.5}$ and particle-associated polycyclic aromatic hydrocarbons (PAHs). Ten homes in Chuncheon, Korea were visited for continuous 72 hour sampling of $PM_{2.5}$ in the living rooms using a MiniVol Portable Sampler from December 22, 2002 to November 3, 2003. During the same period, outdoor $PM_{2.5}$ samples were collected on the top of the Natural Sciences Building of Kangwon National University which is located in the middle of the ten households. Samples were analyzed for $PM_{2.5}$ mass concentrations and six selected PAHs. In two smoking homes, the highest $PM_{2.5}$ concentrations were measured ranging from 51.1 to 69.7 {\mu}g/m^3$ on average in all seasons, indicating smoking is a very important contributor to the elevation of indoor particle concentrations. Seasonal comparison showed that indoor particle concentrations were higher than outdoor ones except winter. Total PAH concentrations in smoking homes were highest in winter among the seasons primarily due to low ventilation rate, followed by the outdoor site and nonsmoking homes. BaP toxic equivalents (TEQs) were calculated for five PAHs. The TEQ for smoking homes in winter was highest followed by the outdoor site in winter. It is concluded that smoking and ventilation rate are two important contributors to the elevation of indoor $PM_{2.5}$ and PAH concentrations.

The Effect of Outdoor Air and Indoor Human Activity on Mass Concentrations of Size-Selective Particulate in Classrooms (대기오염과 실내 거주자의 활동도가 교실 내부의 입자 크기별 먼지 농도에 미치는 영향)

  • Choi, Sang-Jun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • This study evaluated the effects of the human activity and outdoor air on concentrations of size-selective particulate matters (PM) by conducting a realtime measurement in classrooms and on roofs at 4 elementary schools, 3 middle schools and 3 high schools in Incheon City. PM concentrations featured repetitive pattern of increasing during break time (including lunch hours) and cleaning time while decreasing during class hours. This trend was more prominent with inhalable PM and PM10 than fine PMs (PM2.5, PM1.0). The indoor/outdoor (I/O) ratio of inhalable PM and PM10 exceeded 1 while that of fine PMs was close to or below 1. The PM2.5 (out)/PM10 (out) ratio stood at 0.59 (${\pm}0.16$) and the PM2.5 (in)/PM10 (in) ratio was 0.29 (${\pm}0.09$), suggesting that occupant activity had a greater effect upon coarse particles (PM10-PM2.5) than upon fine particles (PM2.5, PM1.0). The correlations between the indoor and the outdoor PM concentrations showed a stronger positive correlation for fine particles than that of coarse particles. The linear regression analysis of PM concentrations indoor and outdoor indicated a higher determinant coefficient ($r^2>0.9$), and consistency for fine particles than in case of coarse particles. In conclusion, the results of this study suggest that the indoor coarse particle concentration is more attributed to occupant activity and the indoor fine particle concentration is more influenced by outdoor air pollution.

Spatio-Temporal Characteristics of PM2.5 in Gyeongnam Province during 2015-2016 (2015~2016년 경남지역의 PM2.5의 시·공간적 특성)

  • Shon, Zang-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1045-1055
    • /
    • 2017
  • Characterization of spatio-temporal variations in $PM_{2.5}$ in Gyeongnam (GN) province during 2015-2016 was investigated to assess the air quality in this area in terms of fine particles. Yearly mean concentrations of $PM_{2.5}$ ranged from 19.1 to $29.5{\mu}gm^{-3}$. High concentrations of $PM_{2.5}$ were observed in spring ($21.2-30.3{\mu}gm^{-3}$) and winter ($20.2-30.3{\mu}gm^{-3}$). Low concentrations of $PM_{2.5}$ were generally observed in fall ($16.2-23.2{\mu}gm^{-3}$). $PM_{2.5}$ concentration was highest in the morning (10 AM). The fractions of $PM_{2.5}$ in $PM_{10}$ were 0.51-0.62 and two were significantly correlated (r=0.779-0.830), suggesting common sources (fossil fuel combustion, mobile sources, etc). CO was significantly correlated with $PM_{2.5}$ in highly urbanized areas such as the city of Changwon (CW, r=0.711), compared to other air pollutants ($SO_2$, $NO_2$, and $O_3$), suggesting dominance of industrial combustion sources.

Calculations of Surface PM2.5 Concentrations Using Data from Ceilometer Backscatters and Meteorological Variables (운고계 후방산란 강도와 기상변수 자료를 이용한 지표면 PM2.5 농도 계산)

  • Jung, Heejung;Um, Junshik
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.61-76
    • /
    • 2022
  • In this study, surface particulate matter (PM2.5) concentrations were calculated based on empirical equations using measurements of ceilometer backscatter intensities and meteorological variables taken over 19 months. To quantify the importance of meteorological conditions on the calculations of surface PM2.5 concentrations, eight different meteorological conditions were considered. For each meteorological condition, the optimal upper limit height for an integration of ceilometer backscatter intensity and coefficients for the empirical equations were determined using cross-validation processes with and without considering meteorological variables. The results showed that the optimal upper limit heights and coefficients depended heavily on the meteorological conditions, which, in turn, exhibited extensive impacts on the estimated surface PM2.5 concentrations. A comparison with the measurements of surface PM2.5 concentrations showed that the calculated surface PM2.5 concentrations exhibited better results (i.e., higher correlation coefficient and lower root mean square error) when considering meteorological variables for all eight meteorological conditions. Furthermore, applying optimal upper limit heights for different weather conditions revealed better results compared with a constant upper limit height (e.g., 150 m) that was used in previous studies. The impacts of vertical distributions of ceilometer backscatter intensities on the calculations of surface PM2.5 concentrations were also examined.

The Characterization of PM, PM10, and PM2.5 from Stationary Sources (고정배출원의 먼지 크기별 (PM, PM10, PM2.5) 배출 특성 연구)

  • Kim, JongHo;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.6
    • /
    • pp.603-612
    • /
    • 2016
  • The objective of this study was to estimate the emission characteristics for PM, $PM_{10}$, and $PM_{2.5}$ in the various stationary sources. The particulate matters collected in the various stationary sources such as power plants (Coal and B-C oil), incinerators(municipal and industrial waste), and glass furnaces. The PM and $PM_{10}$, PM and $PM_{2.5}$, $PM_{10}$ and $PM_{2.5}$ samples were collected using the cyclone type $PM_{10}$, $PM_{2.5}$ samplers and 30 species(19 inorganic species, 9 ionic species, OC and EC) were analyzed by ICP, IC, and TOR/IMPROVE methods. The mass concentrations of PM, $PM_{10}$, $PM_{2.5}$ from nine stationary sources ranged $0.63{\sim}9.58mg/Sm^3$, $0.26{\sim}7.47mg/Sm^3$ and $0.13{\sim}6.34mg/Sm^3$, respectively. The level of $PM_{10}$, $PM_{2.5}$ portion in PM calculated 0.63~0.99, 0.38~0.94, respectively. In the case of emission trend for species, power plant showed high concentrations for Al, Mg, Na, Si, V and $SO_4{^{2-}}$, respectively. Also, Ca, Fe, K, Si, $Cl^-$, and $K^+$ showed high in incinerator. In the case of glass furnace, Na, Pb, K, Si, $Na^+$ and $SO_4{^{2-}}$ represented high concentrations. Power plant showed higher EC/OC concentrations than other sampling sites. These results suggest the possible role for complement establishment process of emission inventory and emission management for PM.

Ionic Compositions of PM10 and PM2.5 Related to Meteorological Conditions at the Gosan Site, Jeju Island from 2013 to 2015

  • Song, Jung-Min;Bu, Jun-Oh;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.313-321
    • /
    • 2017
  • $PM_{10}$ and $PM_{2.5}$ were collected at the Gosan Site on Jeju Island from 2013 to 2015, and their ionic and elemental species were analyzed to examine the variations in their chemical compositional characteristics related to different meteorological conditions. Concentrations of nss-$SO_4{^{2-}}$ and $NH_4{^+}$ were respectively 6.5 and 4.7 times higher in the fine particle mode ($PM_{2.5}$) compared to the coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentrations were 2.4 times higher in the coarse mode compared to the fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased to 8.2 and 5.0 times higher in $PM_{10}$, and 3.5 and 6.0 times higher in $PM_{2.5}$, respectively. During haze days, the concentrations of secondary pollutants increased by 3.1-4.7 and 3.2-7.9 in $PM_{10}$ and $PM_{2.5}$, respectively, and they were, respectively, 1.2-2.1 and 0.9-2.1 times higher on mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in the fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. Clustered back trajectory analysis showed that concentrations of nss-$SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when air masses travelled from China.

Relationship between Indoor and Outdoor Particulate Matter Concentrations in Japan

  • Nakai, Satoshi;Tamura, Kenji
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • We briefly show the results of indoor and personal $PM_{2.5}$ measurements in an epidemiologic study designed to evaluate the health risks of ambient $PM_{2.5}$ in Japan and the relationship between indoor and outdoor PM concentrations. The impact of indoor and outdoor PM pollution on health is described based on one morbidity study. The results of other studies on indoor $PM_{2.5}$ measurements are also described.