• Title/Summary/Keyword: $PI^2$ Control

Search Result 664, Processing Time 0.023 seconds

The MPPT Control of Photovoltaic System using the Fuzzy PI Controller (퍼지 PI 제어기를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • This paper proposes the fuzzy PI controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, this paper proposes the MPPT control using the fuzzy PI controller that can be improve a MPPT control performance. The fuzzy PI controller is adjusted a input of PI controller by fuzzy control and compensated a cumulative error of fuzzy control by PI controller. The fuzzy PI MPPT control is compared to conventional PO and IC MPPT method for various temperature and radiation condition. This paper proves the validity of the fuzzy PI controller using these results.

Feedback Control using Dual O2 Sensors for Improving the Conversion Efficiency of a Three-way Catalyst in a Heavy-duty CNG Engine (CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상)

  • Yoon, Sungjun;Lee, Junsun;Park, Hyunwook;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2019
  • In this study, feedback logic using dual O2 sensor values were developed to increase the purification capability of a three-way catalyst (TWC) in a compressed natural gas (CNG) engine. A heavy-duty inline 6-cylinder engine was used and the CNG was supplied to the engine through a mixer. This study consists of two main parts, namely, the proportional integral (PI) control with a front O2 sensor and the feedback control with dual O2 sensors. In the PI control experiment, effects of various parameters, such as P gain, I gain, and lean delay, on the TWC capability were identified. Based on the results of the PI control experiment, the feedback logic using dual O2 sensor values were developed. In both cases, the nitrogen oxides (NOX) emissions were nearly zero. However, the carbon monoxide (CO) emissions were reduced significant in the feedback logic with dual O2 sensors than in the PI control with the front O2 sensor.

Superheat Control of an Inverter-driven Heat Pump Using PI Control Algorithm

  • Park, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.106-115
    • /
    • 2002
  • The performance of an inverter-driven water-to-water heat pump with an electronic expansion valve (EEV) was measured as a function of compressor frequency, load conditions, and EEV opening. Based on the test results, a controller using proportional integral (PI) feedback or PI feedforward algorithm was designed and tested to investigate capacity modulation and transient response control of the system. Although the relation between superheat and EEV opening of the heat pump showed nonlinear characteristics, a control gain obtained at the rated frequency was applicable to various operating conditions without causing large deviations. When the simple PI feedback control algorithm was applied, a large overshoot of superheat and wet compression were observed due to time delay effects of compressor frequency. However, applying PI feedforward control scheme yielded better system performance and higher reliability, compared to the PI feedback algorithm.

Speed Control for BLDC Motors Using a Two-Degree-of-Freedom Optimal Control Technique (2자유도 적분형 최적제어법을 이용한 BLDC 모터의 속도제어)

  • 권혁진;정석권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.257-265
    • /
    • 2000
  • Brushless DC(BLDC) motors are widely used as AC servo motors in factory automation fields because of their quick instantaneous mobility, good energy saving efficiency and easiness of design for control system comparing with induction motors. Recently, a Two-Degree-of-Freedom(2DOF) PI control law has been adopted to some application parts to accomplish an advanced speed control of BLDC motors. The method can treat the two conflicting performances, minimum tracking errors versus reference inputs without large overshoot and rejection of some disturbances including modeling errors, independently. However, the method can not design the optimal system which is able to minimize tracking errors and energy consumption simultaneously. In this paper, a 2DOF integral type optimal servo control method is investigated to promote the speed control performances of BLDC motors considering energy consumption. In order to applicate the method to the speed servo system of the BLDC motor, the motor is modeled in the state space using the vector control and decoupling technique. To verify the validity of the suggested method, some simulations and experiments are performed.

  • PDF

Improved Model Reduction Algorithm by Nyquist Curve (Nyquist 선도에 의한 개선된 모델 축소 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.215-218
    • /
    • 2001
  • To improve the performance of PID controller of high order systems by model reduction, we proposed a new model reduction method in frequency domain. A new model reduction method we proposed, considered four points (${\angle}G(jw)=0$, $-{\pi}/2$, $-{\pi}$, $-3{\pi}/2$) in stead of two points (${\angle}G(jw)=-{\pi}/2$, and $-{\pi}$) in Nyquist curve. And for high order systems that it have not two point (${\angle}G(jw)=-{\pi}/2$, and $-{\pi}$) in Nyquist curve, we proposed a method to annex very small dead time. This method has a annexed very small dead time on the base model for reduction, and we cancel it after to get the reduced model. It is shown that the performance of proposed method is better than any other methods.

  • PDF

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

Optimal PI Controller Design for Refrigeration System Considering Disturbance (외란을 고려한 냉동시스템의 최적 PI 제어기 설계)

  • Jeong, Seok-Kwon;Hong, Ki-Hak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • The proportional plus integral(PI) feedback control manner has been used in many general industrial fields such as refrigeration system because of its simple design process and favorable control performance. This paper deals with optimized PI controller design of the refrigeration system based on evaluation functions such as integrated absolute error(IAE). The suggested optimal PI gains can be easily calculated by a simple program and the optimal controllability satisfying the evaluation function can be assured. Furthermore, at the initial step of controller design, the suggested optimal gain is able to reflect some noise disturbances caused by an inverter which drives variable speed compressors. The validity of the suggested optimal gain is investigated by some simulations and experiments to verify its efficiency. From the results of comparing control performance between the optimal PI controller based on the evaluation function and the PI controller designed by the Matlab tuner which was known as the most popular gain tuner, the optimal PI controller showed more desirable control performance especially in transient responses.

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

The Control of Superheat and Capacity for a Variable Speed Refrigeration System Based on PI Control Logic

  • Hua, Li;Jeong, Seok-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.54-60
    • /
    • 2007
  • In this paper, we suggest the high efficient control method based on general PI control law for a variable speed refrigeration system. In the variable speed refrigeration system, the capacity and the superheat are mainly controlled by an inverter and an electronic expansion valve, respectively, for saving energy and improving coefficient of performance. Thus, we proposed a decoupling model to eliminate the interfering loop between the capacity and superheat at first. Next, we designed PI controller to control the capacity and superheat independently and simultaneously. Finally, the control performance was investigated through some experiments. The experimental results showed that the proposed PI controller based on the decoupling model can obtain good control performance under the various control references and thermal load.

Effects of Preservative Containing Chitosan on the Shelf Life of Pork Patty (Chitosan이 함유된 보존제의 첨가가 돈육 Patty의 저장에 미치는 효과)

  • Park, La-Young;Jeong, Eun-Ju;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1446-1451
    • /
    • 2013
  • The quality characteristics of pork patty prepared with chitosan containing preservatives during storage at $4^{\circ}C$ were investigated to improve its functional property and shelf life using food preservatives of natural origin (PI; 0.1% chitosan, 2.5% citric acid, 100 ppm grapefruit seed extract, 0.2% adipic acid, 0.1% Cinnamomum extract, D.W. 97.09% and PII; 0.1% chitosan, 2.5% citric acid, 100 ppm grapefruit seed extract, 0.2% adipic acid, 0.1% Lysimachia christinae Hance extract, D.W. 97.09%). The sensory qualities (taste, appearance, texture and overall acceptability) of patties preserved with PI (1, 3 and 5%) and PII (1, 3 and 5%) were also investigated. The taste and overall acceptability of patties prepared with 1% PI and 1% PII were higher than those of the control. The DPPH radical scavenging activities of the control, 1% PI and 1% PII treated patties were 13.54%, 21.78% and 14.07%, respectively. The total aerobes and coliform count of patties preserved with 1% PI were $10^4$ CFU/g and $10^2$ CFU/g, respectively, after 10 days storage at $4^{\circ}C$. Cooking loss from 1% PI and 1% PII treated patties was lower than that of from the control. Water holding capacity was the highest for 1% PI (65.84%), followed by 1% PII and then the control. The shelf life of patties prepared with 1% PI and 1% PII was extended by about 5 days relative to the control at $4^{\circ}C$.