• Title/Summary/Keyword: $PFC^{2D}$

Search Result 122, Processing Time 0.03 seconds

Analysis of Energy and Ground Vibration of Plasma Blasting (플라즈마 발파의 폭력과 지반진동특성)

  • 이경운;박철환;신중호;류창하
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 1997
  • Rock fragmentation with plasma blasting technique has advantageous properties in contrast to the conventional blasting method in controlling of flying rocks and ground vibrations, when residents are complaining or surrounding structures stay in protection from blasting operations. The experiences show in urban construction works that the plasma blasting is the most possible method to prevent damages and minimize adverse environmnetal impacts. The fragmentation energy level is evaluated by numerical simulation using PFC-2D for various drill hole pattern and tested accordingly to get the feasibility. The energy output of plasma blasting system has been improved to a level of 1 MJ, which can break a 2~3 ㎥ granite boulder or 1.5 m height bench face. Measurements are carried out to get the ground vibration level and propagation equation, so that the control of the blasting operations can be performed more precisely and safely.

  • PDF

Effects of Fermented Milk Containing Herb Extract from Acanthopanax divaricatus var. albeofructus and Codonopsis Ianceolata on the Immune Status of Mouse (흰털오가피와 더덕 추출물을 첨가한 발효유 급여가 마우스의 면역기능에 미치는 영향)

  • Lim, Sang-Dong;Seong, Ki-Seung;Kim, Kee-Sung;Han, Dong-Un
    • Food Science of Animal Resources
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2007
  • We have investigated the immunomodulatory activity of water extracts of Acanthopanax divaricatus var. alveofructus in male ICR mice. Mice were administrated with fermented milk containing freeze-dried extract 3 mg/Kg (A), 9 mg/kg (B), 27 mg/Kg (C) per body weight with A. divaricatus var. alveofructus (loots : leaves : stem) : Codonopsis lanceolata = (5 : 2 : 1.5) : 1.5 for 7 and 10 weeks, respectively. Body weight, relative organ weight, cellularity of lymphoid organs, plaque- forming cell (PFC) assay, agglutination (AGG) test and lymphoproliferation were examined in various groups of animals. Any significant differences of body weight gain were not recorded in the tested ICR mice. There was significant different (p<0.05) in the spleen index in B group of 10 weeks and C group of 7 weeks fed mouse. The thymus gain weight was increased during administration of the extract, but there was no significant increase on other organs gain. Humoral immunity as measured by PFC showed more decreased PFC level in 10 weeks than in 7 weeks. In the HT, A. divaricatus var. albeofructus extract also showed a significant increase (p<0.05) in C group of 10 weeks. Administration of extracts from A. divaricatus var. albeofructus increased significantly in the production of IgG antibodies on the mice immunized with SRBC in B group of 7 and 10 weeks (p<0.05).

Investigating the effects of non-persistent cracks' parameters on the rock fragmentation mechanism underneath the U shape cutters using experimental tests and numerical simulations with PFC2D

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Abad, Sh. Mohamadi Bolban;Marji, Mohammad Fatehi;Saeedi, Gholamreza;Yu, Yibing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.495-513
    • /
    • 2022
  • This paper aims to study the fracture mechanism of rocks under the 'u'shape cutters considering the effects of crack (pre-existing crack) distances, crack spacing and crack inclination angles. The effects of loading rates on the rock fragmentation underneath these cutters have been also studied. For this purpose, nine experimental samples with dimensions of 5 cm×10 cm×10 cm consisting of the non-persistent cracks were prepared. The first three specimens' sets had one non-persistent crack (pre-existing crack) with a length of 2 cm and angularity of 0°, 45°, and 90°. The spacing between the crack and the "u" shape cutter was 2 cm. The second three specimens" set had one non-persistent crack with a length of 2 cm and angularity of 0°, 45°, and 90° but the spacing between pre-existing crack and the "u" shape cutter was 4 cm. The third three specimens'set has two non-persistent cracks with lengths of 2 cm and angularity of 0°, 45° and 90°. The spacing between the upper crack and the "u" shape cutter was 2 cm and the spacing between the lower crack and the upper crack was 2 cm. The samples were tested under a loading rate of 0.005 mm/s. concurrent with the experimental investigation. The numerical simulations were performed on the modeled samples with non-persistent cracks using PFC2D. These models were tested under three different loading rates of 0.005 mm/s, 0.01 mm/sec and 0.02 mm/sec. These results show that the crack number, crack spacing, crack angularity, and loading rate has important effects on the crack growth mechanism in the rocks underneath the "u" shape cutters. In addition, the failure modes and the fracture patterns in the experimental tests and numerical simulations are similar to one another showing the validity and accuracy of the current study.

A Study on the Behavior of Blasting Demolition for a Reinforced Concrete Structure Using Sealed Model Test and Particle Flow Analysis (축소모형실험과 입자결합모델 해석을 통한 철근 콘크리트 구조물의 발파해체 거동에 관한 비교 분석)

  • 채희문;전석원
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • In this study, a comparison was made between the resulting behaviors of scaled model test and particle flow analysis for blasting demolition of a reinforced concrete structure. For the test and analysis, a progressive failure of a five-story structure was considered. The dimension analysis was carried out to properly scale down the real structure into the laboratory size. The test model was made of the mixture of gypsum, sand and water along with soldering lead to analogy reinforcing steel bars. The ratio of mixing components was chosen to best represent the scaled down strength and deformation modulus. The columns and girders of the structure were precasted in the laboratory and assembled right before the blasting test. The numerical analysis of the blasting demolition was carried out using PFC2D (Particle Flow Analysis 2-Dimension by Itasca). The results of the blasting of concrete lahmen structure showed roughly identical demolition behavior between scaled model test and numerical test. For the blasting of the reinforced concrete structure, the results were more identical and closer to the real demolition behavior, since the demolition behavior was better represented in this case due to the increased tensile strength of the component.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Dong-Seok;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.314-323
    • /
    • 2010
  • Recently, granular soils having a large particle size are frequently used as a filling material in the construction of foundation, harbor, dam, and so on. The shear behavior of this granular soil plays a key role in the stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause the disturbance of ground characteristics and consequently induce an issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Using the crushing model and non-crushing model which were created in this study, numerical analyses of ring shear test were conducted and their results were analyzed and compared. In general, landslide and slope stability are accompanied by a large displacement and consequently not only a peak strength but also a residual strength are very important in the analysis of landslide and slope stability. However the direct shear test which has been commonly used in the determination of shear strength parameters has a limitation on displacement therefore the residual strength parameters can not be obtained. The characteristics of residual shear behavior were investigated through the numerical analyses in this study.

  • PDF

Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression

  • Tian, Wen-Ling;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-560
    • /
    • 2017
  • In this research, experimental and numerical simulations were adopted to investigate the effects of ligament angle on compressive strength and failure mode of rock-like material specimens containing two non-coplanar filled fissures under uniaxial compression. The experimental results show that with the increase of ligament angle, the compressive strength decreases to a nadir at the ligament angle of $60^{\circ}$, before increasing to the maximum at the ligament angle of $120^{\circ}$, while the elastic modulus is not obviously related to the ligament angle. The shear coalescence type easily occurred when ${\alpha}$ < ${\beta}$, although having the same degree difference between the angle of ligament and fissure. Numerical simulations using $PFC^{2D}$ were performed for flawed specimens under uniaxial compression, and the results are in good consistency with the experimental results. By analyzing the crack evolution process and parallel bond force field of rock-like material specimen containing two non-coplanar filled fissures, we can conclude that the coalescence and propagation of crack are mainly derived from parallel bond force, and the crack initiation and propagation also affect the distribution of parallel bond force. Finally, the displacement vectors in ligament region were used to identify the type of coalescence, and the results coincided with that obtained by analyzing parallel bond force field. These experimental and numerical results are expected to improve the understanding of the mechanism of flawed rock engineering structures.

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

Numerical simulation of the behavior of failing rock blocks (암블록 낙석 거동에 대한 수치해석적 모사)

  • Kim, Soo-Lo;Chang, Buhm-Soo;Shin, Chang-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.751-758
    • /
    • 2005
  • In this study, the Discrete Element Code was applied to the analysis of falling rock blocks. The simulation was performed using the PFC2D computer code. Falling rock blocks should be applied as additional force to each others. The force affect the motion of falling rock blocks. This was used to find out the behavior of each blocks. This study revealed that the DEM can successfully capture the behavior of falling rock blocks.

  • PDF

Battery Charger for EV (전기자동차용 배터리 충전기)

  • Yun, Su-Young;Chae, Hyung-Jun;Kim, Won-Yong;Moon, Hyung-Tae;Jeong, Yu-Seok;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.361-362
    • /
    • 2010
  • 최근 화석 연료의 고갈과 이산화탄소 배출 제한으로 인하여 내연기관 자동차에서 전기 자동차로의 대한 관심이 높아지고 있다. 전기 자동차 배터리 충전에 필요한 AC-DC 컨버터가 필요하며 컨버터의 필요 조건 으로 넓은 출력 전압 범위, 고효율, 높은 역률 등을 들수 있다. 넓은 전압 범위와 절연을 위해 2단 구성 하였다. 앞단은 LLC 컨버터를 후단은 역률을 고려 하여 BOOST 컨버터를 이용한 PFC 회로를 구현하여 실험적으로 확인 하였다.

  • PDF

Effect of Api-Toxin Therapy on Depression of Immune Response in Mice (봉독침자극(蜂毒鍼刺戟)이 생쥐의 면역기능(免疫機能)에 미치는 영향(影響))

  • Kang, Seung-Bum;Koh, Hyung-Kyun;Kim, Chang-Hwan
    • The Journal of Korean Medicine
    • /
    • v.17 no.1 s.31
    • /
    • pp.234-246
    • /
    • 1996
  • In order to investigate the effects of api-toxin therapy on depression of immune response, mice were exposed to cold stress $(-20^{\circ}C)$) in 30 minutes twice a day and api-toxin(Bee Venom from Korea and U.S.A) therapy was treated to the Kihae $(CV_6)$ locus of human body every two days with 4 sessions of treatment for 8 days. The mice were sensitized i.v. with $5{\times}10^8$ sheep red blood cells (SRBC) on the 4th day and challenged i.d. with $2{\times}10^9$ SRBC 4 days later. Immune Response for delayed type hypersensitivity (DTH), lympocyte transformation(LTT), hemolysin titer(HL), plaque forming cells (PFC) were measured.

  • PDF