• Title/Summary/Keyword: $PCl_5$

Search Result 126, Processing Time 0.033 seconds

Surface Hydrolysis of Fibrous Poly(${\epsilon}$-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation

  • Park, Jeong-Soo;Kim, Jung-Man;Lee, Sung-Jun;Lee, Se-Geun;Jeong, Young-Keun;Kim, Sung-Eun;Lee, Sang-Cheon
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.424-429
    • /
    • 2007
  • A procedure for the surface hydrolysis of an electrospun poly(${\epsilon}$-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.

Evaluation of Bilayer Polycaprolactone Scaffold for Osteochondral Regeneration in Rabbits

  • Park, Min-hyeok;Hwang, Ya-won;Jeong, Do-Sun;Kim, Gon-hyung
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.332-339
    • /
    • 2016
  • Polycaprolactone (PCL) scaffold have been developed as an alternative to natural donor tissue to repair a large osteochondral defect. The objective of this study is to evaluate efficacy and biocompatibility of bilayer PCL scaffold implanted for osteochondral repair in rabbit. Twenty-two male New Zealand White rabbits were used in this animal experiment. Rabbits were divided into three groups. Experimental surgery was carried out under general anesthesia. Osteochondral defects (5 mm diameter and 5 mm deep) were made in the center of the patellar groove using a 5 mm diameter biopsy punch. In group I (3D plotting) and group II (salt-leaching), the scaffold was implanted using the press-fitted technique into the defect. In control group, after osteochondral defect was created, the defect was left without implant. After four and eight weeks, rabbits were sacrificed and the defects were evaluated by macro -and microscopical methods. There were not found animal death and severe inflammatory evidence during the experimental periods. There were no significant differences between the experimental groups in gross evaluation. However the group I scored significantly higher than group II at 8 weeks in histological evaluation (P < 0.05). The 3-D plotting PCL scaffold was more suitable method for reconstruction of osteochondral defect than a salt-leaching PCL scaffold.

Functional Evaluation after Arthroscopic Reconstruction in Isolated and Combined Injury of Posterior Cruciate Ligament (후방십자인대의 단독 및 동반 손상에서 관절경적 재건술 후 기능적 평가)

  • Lee Kwang-Won;Lee Seung-Hun;Park Jae-Guk;Kim Ha-Yong;Kim Byung-Sung;Choy Won-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.6 no.2
    • /
    • pp.115-120
    • /
    • 2002
  • Purpose : To compare the functional evaluation with the posterior translation after arthroscopic PCL reconstruction in isolated and combined PCL-deficient knees. Materials and Methods : We retrospectively evaluated 45 patients with PCL-deficient knees who were treated by arthroscopic PCL reconstruction using Achilles tendon allograft from June 1994 to June 2000. The differences of posterior translation were measured with posterior stress lateral radiographs and KT-2000 arthrometer. The functional results were evaluated using the Lysholm knee score and IKDC evaluation form. Results : Preoperative mean side to side differences of the posterior translation were 11.83 mm in isolated PCL-deficient knees and 12.7 mm in combined PCL-deficient knees respectively. At the last follow-up in isolated and combined PCL-deficient knees, the mean radiographic side to side differences of the posterior translation were 6.38 mm and 6.7 mm, the average corrected 20 Ib posterior displacements using KT-2000 arthrometer were 3.5 mm and 4.1 mm, the mean Lysholm score were 87.4 and 81.2, the grade A and B of IKDC evaluation form were 16 cases $(88.9\%)$ and 23 cases $(85.2\%)$, respectively. Conclusion : The functional results had no relationship with the degree of posterior translation after arthroscopic PCL reconstruction. Tendency of posterior translation may be influenced by associated injury of the knee.

  • PDF

The Clinical Results of Posterior Cruciate Ligament Reconstruction Using Transtibial Tunnel and Posterior Transseptal Portal (경골터널과 후방 경격막 도달법을 이용한 후방십자인대 재건술의 임상적 결과)

  • Cho, Jin-Ho
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • Purpose: The purpose of the study is to provide the clinical results of arthroscopic posterior cruciate ligament(PCL) reconstruction with preservation of the original PCL using transtibial tunnel and posterior transseptal portal. Materials and Methods: 36 patients underwent PCL reconstruction with achilles tendon allografts. We tried to preserve of the original PCL.At the final follow-up, patients were evaluated retrospectively by four measurements: Lysholm knee scores, IKDC grades, Telos stress radiography, and second look arthroscopy.Follow-up periods were from 12 months to 30 months. Results: The average Lysholm knee score improved from $66.0{\pm}8.67$ to $87.9{\pm}5.04$. Preoperative IKDC grades were abnormal in 15(41.7%) and severely abnormal in 21(58.3%), postoperative IKDC grades were normal in 6(16%),nearly normal in 24(66%), abnormal in 5(16%) and severely abnormal in 1(2%).The average side to side difference in Telos stress test decreased from $12.5{\pm}2.61(7{\sim}20)$ mm to $3.9{\pm}1.34(7{\sim}1)$ mm (paired sample T test, p=0.001) Conclusion: Arthroscopic posterior cruciate ligament(PCL) reconstruction with preservation of the original PCL using transtibial tunnel and posterior transseptal portal is useful surgical method.

  • PDF

Mechanical properties, Biodegradability and Biocompatibility of Coronary Bypass Artery with PCL Layer and PLGA/Chitosan Mats Using Electrospinning

  • Nguyen, Thi-Hiep;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.2-45.2
    • /
    • 2009
  • A coronary graft fabricated from PLGA poly (lactic-co-glycolic acid) and chitosan electros puns deposited on poly caprolactone (PCL) electro spun tube. Mechanical properties of tube were evaluated through extruder machine depending on thickness of vessel wall. Biocompatible properties were evaluated by SEM morphology, amount of cell counting and MTT assay method for depending on culture days (1, 3, 5 days). MTT assay, counting cell and SEM morphology showed that cells were fast growth and immigration after 5 days. Biodegradability was monitored through loss weigh method for incubator days.

  • PDF

Arthroscopic PCL Reconstruction using fresh-frozen Achilles Allograft (동종 아킬레스건을 이용한 관절경적 후방 십자 인대 재건술)

  • Chun, Churl-Hong;Kim, Dong-Churl;Shin, Ho-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2000
  • Purpose : The purpose of this study was to evaluate the clinical results of fresh-frozen achilles allograft PCL reconstruction. Materials and Methods : 34 patients(35 cases) who was reconstructed PCL arthroscopically using achilles allograft were analyzed subjective and objective parameters, Telos stress arthrometer and Modified Feagin Scoring System. The average age was 36.2 years old($16\~57$ year) and average follow up period was 18.5 months($12\~27$ months). Result : The mean Lysholm Knee Scoring was improved from 47.5 to 87.4. Posterior translation by Telos arthrometer decreased to 2.3mm from 7.1mm. The modified Feagin scoring system showed 32 cases$(91.5\%)$ with excellent and good result. Conclusion : Clinical results of PCL reconstruction by Achilles allograft revealed good result as to scales. Achilles allograft provided enough initial tension with length and minimized the complication of using autograft. Therefore achilles fresh-frozen allograft in PCL reconstruction is a good substitute material for autograft.

  • PDF

Evaluation of the Effect of Low Dietary Fermentable Carbohydrate Content on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Meat Quality in Finishing Pigs

  • Hong, S.M.;Hwang, J.H.;Kim, In-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1294-1299
    • /
    • 2012
  • A total of 96 pigs ($49.23{\pm}3.20$ kg) were used in an 11 wk growth trial to evaluate the effect of fermentable carbohydrate (FC) content on growth performance, apparent total tract digestibility (ATTD) of nutrient, blood profile, and meat quality. The dietary treatments were: i) negative control (NC), basal diet, ii) positive control (PC), NC+antibiotics (positive control diet with 5 ppm flavomycin), iii) PCL, PC-13% lower FC, and iv) NCL, NC-13% lower FC. The growth performance (average daily gain, average daily feed intake, and gain/feed) didn't differ among treatments through the whole experiment. These pigs fed the PCL diet had the greater (p<0.05) apparent total tract digestibility (ATTD) of dry matter than those from PC and NC treatment at the end of the experiment. No differences were observed in white blood cell (WBC), red blood cell (RBC), and lymphocyte concentration among different treatments. After the feeding period, meat samples were collected from the pigs at slaughter. The pigs in NCL and PCL treatments had greater (p<0.05) backfat thickness and lower lean percentage. The color value of loin was higher (p<0.05) in NCL treatment compared to PCL treatment. Also, the NCL treatment had higher (p<0.05) marbling value than PC treatment. The drip loss was depressed by PCL and NCL treatment comapared to NC treatments. The water holding capacity (WHC) was higher (p<0.05) in NC and PCL treatment. In conclusion, the low FC can improve digestibility and meat quality of finishing pigs.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

BCP/PCL scaffold의 표면개질을 위한 실리콘, 카르복실기, fibronectin 코팅 및 생체적합성에 관한 연구

  • Gwak, Gyeong-A;Kim, Yeong-Hui;Kim, Min-Seong;Park, Min-Ju;Jyoti, Anirban;Byeon, In-Seon;Lee, Byeong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • 조직공학의 중요한 요소로 작용하는 scaffold는 여러 가지 필수적인 조건들을 만족시켜야 한다. 대표적인 특징들로는 (1)생분해성 및 비독성, (2)넓은 표면적을 갖는 상호 연결된 내부 다공성 구조, (3)구조적 안정성, (4)세포부착 기질의 제공, (5)낮은 면역 반응성, (6)혈전 형성 억제, (7)친수성, (8)생체 기능성 등을 들 수 있다. 이러한 scaffold가 갖추어야 할 특성 중에서 세포 부착 기질 제공을 위하여 scaffold에 표면 개질을 통한 기능기를 도입하였다. 본 연구에서는 BCP scaffold의 구조적 안정성 부여를 위하여 PCL(polycaprolactone)을 infiltration 하였다. PCL은 소수성의 특징을 갖고 있어 세포와 상호작용 할 수 있는 생물학적 반응기가 없기 때문에 세포와의 친화성이 떨어진다. 세포의 친화성을 높여주기 위해 실리콘의 전구체인 TEOS(tetraethly orthosilicate)를 코팅하고, 그 위에 카복실기(carboxylic acid group)를 도입하였다. 또한 세포의 고정화를 높여주기 위해 fibronectin을 코팅하여 BCP/PCL scaffold의 세포 친화성을 높여주었다. 이와 같이 제조된 고기능성 BCP/PCL scaffold의 내부 구조와 특성을 Micro-CT로 확인하였고, 또한 실리콘 코팅 여부를 확인하기 위하여 SEM-EDS를 통해 관찰하였으며, FT-IR 관찰을 통해 카복실기 도입 여부를 확인 하였다. 또한 생체적합성 평가를 위해 MTT assay, 조골세포의 부착에 미치는 영향을 관찰하기 위해 SEM, 조골세포의 유전자 발현에 미치는 영향을 관찰하기 위해 RT-PCR을 통해 확인 하였다.

  • PDF

Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells

  • Park, Hannara;Kim, Jin Soo;Oh, Eun Jung;Kim, Tae Jung;Kim, Hyun Mi;Shim, Jin Hyung;Yoon, Won Soo;Huh, Jung Bo;Moon, Sung Hwan;Kang, Seong Soo;Chung, Ho Yun
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2018
  • Background: Autogenous bone grafts have several limitations including donor-site problems and insufficient bone volume. To address these limitations, research on bone regeneration is being conducted actively. In this study, we investigate the effects of a three-dimensionally (3D) printed polycaprolactone (PCL)/tricalcium phosphate (TCP) scaffold on the osteogenic differentiation potential of adipose tissue-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMSCs). Methods: We investigated the extent of osteogenic differentiation on the first and tenth day and fourth week after cell culture. Cytotoxicity of the 3D printed $PCL/{\beta}-TCP$ scaffold was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, prior to osteogenic differentiation analysis. ADSCs and BMSCs were divided into three groups: C, only cultured cells; M, cells cultured in the 3D printed $PCL/{\beta}-TCP$ scaffold; D, cells cultured in the 3D printed $PCL/{\beta}-TCP$ scaffold with a bone differentiation medium. Alkaline phosphatase (ALP) activity assay, von Kossa staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting were performed for comparative analysis. Results: ALP assay and von Kossa staining revealed that group M had higher levels of osteogenic differentiation compared to group C. RT-PCR showed that gene expression was higher in group M than in group C, indicating that, compared to group C, osteogenic differentiation was more extensive in group M. Expression levels of proteins involved in ossification were higher in group M, as per the Western blotting results. Conclusion: Osteogenic differentiation was increased in mesenchymal stromal cells (MSCs) cultured in the 3D printed PCL/TCP scaffold compared to the control group. Osteogenic differentiation activity of MSCs cultured in the 3D printed PCL/TCP scaffold was lower than that of cells cultured on the scaffold in bone differentiation medium. Collectively, these results indicate that the 3D printed PCL/TCP scaffold promoted osteogenic differentiation of MSCs and may be widely used for bone tissue engineering.