• Title/Summary/Keyword: $O_2$ 플라즈마

Search Result 1,229, Processing Time 0.027 seconds

Etch damage evaluation of $(Bi_{4-x}La_x)Ti_{3}O_{12}$ thin films using inductively coupled plasma sources (유도결합 플라즈마를 이용한 $(Bi_{4-x}La_x)Ti_{3}O_{12}$ 박막의 식각 손상)

  • Kim, Jong-Gyu;Kim, Gwan-Ha;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1374-1375
    • /
    • 2006
  • Ar/$Cl_2$ 유도결합 플라즈마 (ICP)의 가스 혼합비에 따른 $(Bi_{4-x}La_x)Ti_{3}O_{12}$ 박막의 식각 메커니즘과 식각면에서의 플라즈마 손상을 조사하였다. BLT 박막의 최대식각률은 Ar/$Cl_2$ 플라즈마에서의 Ar 가스 혼합비가 80%일 때 50.8 nm의 값을 보였다. 정전 탐침을 통해 Ar 가스의 혼합비에 따른 전자온도와 전자밀도를 관측하였다. 박막 표면의 X-ray photoemission spectroscopy 분석과 박막의 이력곡선을 통해 BLT 박막의 식각 손상은 Cl 원자와의 반응에 의한 화학적 식각 손상이 BLT 박막 표면에서의 Ar 이온충돌에 의한 물리적 손상보다 더 크다는 것을 확인 할 수 있었다.

  • PDF

Fabrication and characteristics of suspension-plasma-sprayed yttrium oxide coatings (서스펜션 플라즈마 스프레이 코팅법을 이용한 이트리아 코팅막 제조와 특성)

  • Kim, Min Suk;So, Sung Min;Kim, Hyung Soon;Park, Seong Hwan;Ham, Young Jae;Jeon, Min Seok;Kim, Kyoung Hun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2019
  • The suspension plasma spraying is a modification of conventional plasma spray techniques that has been developed to overcome the challenge of using fine particles in plasma spray processes. In this study, microstructure developments and mechanical property of yttrium oxide (Y2O3) coatings prepared by the suspension plasma spray coating technique have been investigated to determine the effect of processing parameters including plasma gun current and total gas flow. The results showed that a highly dense Y2O3 coating having low porosity of 0.2 vol% without any lamellar structures can be achieved at the optimum condition of gun current 200 A and total gas flow 220 L/min.

Etching properties of TaN/$HfO_2$ gate structure by using high density plasma (고밀도 플라즈마를 이용한 TaN/$HfO_2$ 게이트 구조의 식각 특성)

  • Kim, Gwan-Ha;Kim, Chang-Il;Jang, Myoung-Soo;Lee, Ju-Wook;Kim, Sang-Gi;Koo, Jin-Gun;Kang, Jin-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.158-159
    • /
    • 2007
  • 반도체 소자의 공정에 있어서 device scaling으로 인한 게이트 산화막 대체 유전체 (high-k)의 공정 개발 확보 방안 필요하다. 본 논문에서는 $Cl_2$/Ar 유도 결합 플라즈마를 이용하여 $HfO_2$ 박막을 식각하였다. $Cl_2$(80 %)/Ar(20 %)의 가스비, 600 W의 RF 전력, -150 V의 직류 바이어스 전압, 20 sccm의 총 가스유랑, 15 mTorr의 압력에서 15.4 nm/min의 최대 식각률을 얻을 수 있었다. 식각 된 $HfO_2$ 박막 표면을 XPS 분석한 결과 Hf와 O는 Cl 라디칼과 반응을 하여 높은 휘발성을 보이지만 Hf-O의 안정된 결합으로 인하여 이온에 의한 스퍼터링 효과에 의해서 식각된다.

  • PDF

Selectivity and Permeability Characteristics of Pure CO2 and N2 Gases through Plasma Treated Polystyrene Membrane (플라즈마 처리된 폴리스티렌 막을 통한 순수한 CO2 와 N2 기체의 선택·투과 특성)

  • Hwang, Yui-Dong;Shin, Hee-Yong;Kwak, Hyun;Bae, Seong-Youl
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.588-596
    • /
    • 2006
  • The surface of polystyrene membrane treated by Ar, $O_2$ plasma, and the effects were observed before and after the treatment and permeability of $CO_2$, $N_2$ and selectivity of $CO_2$ relative to $N_2$ was measured using continuous flow gas permeation analyzer (GPA). The mole ratio of O over C in the surface was increased from 0 to 0.179 with Ar plasma treatment and route mean square of surface was increased from $15.86{\AA}$ to $71.64{\AA}$. Therefore the contact angle was decreased from $89.16^{\circ}$ to $18.1^{\circ}$. Thus Plasma treatments made surface of membrane tend to be highly hydrophilic. The optimum condition for the $CO_2$ permeability and ideal selectivity of the plasma treated membrane was as follows: the measurement of Ar (60 W, 2 min, $70^{\circ}C$) plasma treatment was $1.14{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$ and 4.22. In the case of $O_2$ plasma treatment, the contact angle was decreased at $13.56^{\circ}$ with increase of O/C ratio ($0.189{\AA}$) and route mean square of surface ($57.10{\AA}$). The optimum condition for the $CO_2$ permeability and ideal selectivity of the plasma treated membrane was as follows: the measurement of $O_2$ (90 W, 2 min, $70^{\circ}C$) plasma treatment was $7.1{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$ and 11.5. After plasma treatment, the changes of membrane surface were all subtly linked with both cross-linking and etching effects. Finally, it was confirmed that the gas permeation capacity and selectivity of the modified membrane with plasma could be improved by an appropriate control of the plasma conditions such as treatment time, the power input and sort of plasma gas.

Effect of Plasma Treatment with O2, Ar, and N2 Gas on Porous TiO2 for Improving Energy Conversion Efficiency of DSSC (Dye Sensitized Solar Cell)

  • Gang, Go-Ru;Sim, Seop;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.202-202
    • /
    • 2012
  • 염료감응태양전지(DSSC)의 광변환 효율을 향상시키기 위하여 진공챔버에서 450도 고온에서 O2, Ar, and N2 혼합가스를 주입하여 다양한 plasma로 TiO2 박막을 처리하면서 소성시켰다. TiO2 표면을 cleaning하고 활성화함으로서 염료의 결합력을 향상시키는 것 외에 TiO2 내부의 oxygen vacancy를 변화를 관찰하였다. 실험에 사용한 박막은 glass 위에 FTO 박막을 입히고, 다공성 TiO2 나노입자 박막을 코팅하여 제조하였다(porous TiO2 나노입자(${\sim}12{\mu}m$)/FTO(Fluorine doped Tin oxide; $1{\mu}m$)/glass). 완성된 광전극에 대해서 XRD, XPS, EIS, FE-SEM 등을 이용하여 분석하였다. 또한 이렇게 전처리된 광전극을 사용한 DSSC를 제작하였다. 그리고 Solar-simulator를 통해 그 효율을 측정하여 '플라즈마환경에서 소성된 광전극에 대한 DSSC의 광변환효율에 미치는 효과'을 고찰하였다.

  • PDF

A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst (대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.142-149
    • /
    • 2008
  • This paper proposes an effective decomposition method of trichloroethylene using pellet packed-bed non-thermal plasma reactor and catalyst. For that, two types of reactors filled with manganese dioxide and alumina pellets are designed. When $MnO_2$ packed reactor is used, TCE decomposition rate is high due to the generation of oxygen atom radicals at the surface of catalyst during ozone decomposition. In addition, When $Al_2O_3$ packed reactor is used, TCE is oxidized into DCAC and it did not decomposed into small molecules such as COx and $Cl_2$. However, the plasma processed gas using $Al_2O_3$ packed reactor is passed through the $MnO_2$ catalyst reactor, which is placed at the downstream of plasma reactor, the decomposition rate increased as well due to oxygen atom radicals through ozone decomposition. Therefore, the adequate use of $MnO_2$ catalyst in the plasma process is very promising way to increase the decomposition efficiency.

The Effect of Substrate Pore Size on Gas Permeation Mechanism in Composite Membrane by Plasma Polymerization (플라즈마 중합된 고분자 복합막에서 기질의 기공크기가 기체투과 메카니즘에 미치는 영향)

  • Hyun, Sang-Won;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.502-508
    • /
    • 1999
  • We prepared non-porous membrane on the $Al_2O_3$ substrate with the different pore by the size by the plasma polymerization of $CHF_3$. We studied the permeability characteristics of membrane by Ar treatment and the effect of substrate pore size on gas permeation mechanism. The selectivity was increased with Ar plasma treatment time and rf-power near the substrate to the cathode while the permeability was decreased. It was observed that the solution-diffusion model would be applied to non-porous layers while it is applied Knudsen diffusion model to the substrate. From the experimental observation, it could be concluded that the pore size of $Al_2O_3$ membrane influenced on the permeability and the selectivity.

  • PDF

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Effects of Plasma Spray Conditions on Photoelectric Properties of Plasma Sprayed $TiO_2$ Semiconductor ($TiO_2$ 반도체 용사피막의 광전극 특성에 미치는 용사조건의 영향)

  • 박정식;박경채
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • In this study, plasma spraying has been used to produce $TiO_2$ polycrystalline coatings from $TiO_2$ powders. The physical and chemical properties of plasma sprayed $TiO_2$ coatings depend greatly on plasma spraying conditions. The electrical resistivity, oxygen concentration, photocurrent and crystal structure of plasma sprayed $TiO_2$ coating has been studied. The results are as follows: 1. The oxygen loss and electrical conductivity of $TiO_2$ plasma sprayed coatings increased by low pressure and high amount of auxiliary gas, hydrogen in plasma spraying. 2. Oxygen loss increase electrical conductivity, and decrease photocurrent of $TiO_2$ plasma sprayed coatings. 3. Photocurrent of $TiO_2$ plasma sprayed coatings manufactured in atmospheric pressure is higher than that of low pressure.

  • PDF