• Title/Summary/Keyword: $Na_2O$농도

Search Result 587, Processing Time 0.03 seconds

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

Evasive Behavior of the Red Flour Beetle, Tribolium castaneum, against Chlorine Dioxide and Its Suppression by Heat Treatment (이산화염소에 대한 거짓쌀도둑거저리의 회피행동과 이를 억제하는 열처리 효과)

  • Kim, Yonggyun;Kumar, Sunil;Rahman, M. Mahbubur;Kwon, Hyeok;Chun, Yongsik;Na, Jahyun;Kim, Wook
    • Korean journal of applied entomology
    • /
    • v.54 no.3
    • /
    • pp.151-158
    • /
    • 2015
  • Chlorine dioxide ($ClO_2$) can be used as a fumigant to kill insects. However, some insects can exhibit an evasive behavior from chlorine dioxide. This evasive behavior decreases the efficiency of the insecticidal activity of chlorine dioxide. This study tested a hypothesis that heat treatment suppresses the evasive behavior and synergizes the control efficacy of chlorine dioxide. Chlorine dioxide fumigation killed the red flour beetle, Tribolium castaneum, under direct exposure condition to the chemical for 12 h with median lethal concentrations of 383.67 ppm (153.63 - 955.78 ppm: 95% confidence interval) for larvae and 397.75 ppm (354.46 - 446.13 ppm: 95% confidence interval) for adults. However, when they were treated with enough diet flour, they exhibited an evasive behavior by entering the diet, which significantly decreased the control efficacy of the fumigant. To clarify the evasive behavior, the choice test of the adults were performed in Y tube arena. The test adults significantly avoided the diet treated with chlorine dioxide, while the antennatectomized adults lost the avoidance behavior. Heat treatment using $46^{\circ}C$ for 6 h killed only 10% or less of T. castaneum. Interestingly, most adults were observed to come out of the diet under the heat treatment. Chlorine dioxide treatment even at 400 ppm for 6 h did not kill any T. castaneum. However, the combined treatment of chlorine dioxide with the heat treatment for 6 h resulted in 95% mortality. These results indicated that heat treatment suppressed the evasive behavior of T. castaneum and synergized the control efficacy of the chlorine dioxide fumigant.

Pollution of Pb in paddy field soil and rice plants at roadside areas;I. Pollution of Pb in paddy field soil and its chemical forms (도로변(道路邊)에 인접(隣接)한 경작지(耕作地) 토양(土壤) 및 작물체중(作物體重)의 연오염(鉛汚染) 제(第)1보(報) 경작지(耕作地) 토양중(土壤中)의 연오염(鉛汚染) 및 화학적(化學的) 형태(形態))

  • Lee, Seog-June;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The object of this stduy was to investigate the pollution of Pb in paddy field soil with different distance from roadside and to find out the relationship between the ratio of chemical fractions of total Pb and soil characteristics. Lead from automobiles is exhausted as particulates composed primarily of halide compounds (PbBrCl, $PbBr_2$, $PbCl_2$). The samples of soil were collected directly from the paddy fields with different distance from the roadside of highway and expressway which are located in Kyungpook province. A sequential extraction procedure was used to fractionate Pb in paddy field soil into the disignated forms of water soluable, exchangeable, organically bounded, carbonate, sulfide, and residual Pb. Results obtained are summerized as follows. 1. The content of Pb in paddy field soil was the highest in Chungdo, 30.0 ppm, the lowest in Koryung, 14.8 ppm, and the total average content was 21.9 ppm. The effect of traffic volume was not clear, but a slight difference according to the order of opened year of roads was showed. 2. The effect of distance from roadside was not clear. The content of Pb in paddy field soil with different distance from roadside was 22.2 ppm within l0m, 22.1 ppm in 10∼30m, 22.2 ppm in 30∼50m. and 21.3 ppm beyond 50m. 3. The distribution of Pb fractions in soil showed a wide difference depending on soil properties. The average content of exchangeable. organically bounded, carbonate, sulfide, and residual Pb was 8.6%, 33.6%, 29.8%, 21.5%, and 6.7%, of total Pb in the soil, respectively. 4. The content of organically bounded Pb in soil showed highly positive correlation with organic matter and CEC, while the content of exchangeable Pb was highly negative correlation. 5. With higher soil organic matter and CEC, organically bounded Pb fraction tend to be higher but exchangeable Pb fraction tend to be lower. Other forms of Pb showed no difference with soil organic matter contend and CEC. The distribution of Pb fraction related to CEC showed similiar tendency with that of organic matter content.

  • PDF

Air Pollution and Its Effects on E.N.T. Field (대기오염과 이비인후과)

  • 박인용
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.6-7
    • /
    • 1972
  • The air pollutants can be classified into the irritant gas and the asphixation gas, and the irritant gas is closely related to the otorhinolaryngological diseases. The common irritant gases are nitrogen oxides, sulfur oxides, hydrogen carbon compounds, and the potent and irritating PAN (peroxy acyl nitrate) which is secondarily liberated from photosynthesis. Those gases adhers to the mucous membrane to result in ulceration and secondary infection due to their potent oxidizing power. 1. Sulfur dioxide gas Sulfur dioxide gas has the typical characteristics of the air pollutants. Because of its high solubility it gets easily absorbed in the respiratory tract, when the symptoms and signs by irritation become manifested initially and later the resistance in the respiratory tract brings central about pulmonary edema and respiratory paralysis of origin. Chronic exposure to the gas leads to rhinitis, pharyngitis, laryngitis, and olfactory or gustatory disturbances. 2. Carbon monoxide Toxicity of carbon monoxide is due to its deprivation of the oxygen carrying capacity of the hemoglobin. The degree of the carbon monoxide intoxication varies according to its concentration and the duration of inhalation. It starts with headache, vertigo, nausea, vomiting and tinnitus, which can progress to respiratory difficulty, muscular laxity, syncope, and coma leading to death. 3. Nitrogen dioxide Nitrogen dioxide causes respiratory disturbances by formation of methemoglobin. In acute poisoning, it can cause pulmonary congestion, pulmonary edema, bronchitis, and pneumonia due to its strong irritation on the eyes and the nose. In chronic poisoning, it causes chronic pulmonary fibrosis and pulmonary edema. 4. Ozone It has offending irritating odor, and causes dryness of na sopharyngolaryngeal mucosa, headache and depressed pulmonary function which may eventually lead to pulmonary congestion or edema. 5. Smog The most outstanding incident of the smog occurred in London from December 5 through 8, 1952, because of which the mortality of the respiratory diseases increased fourfold. The smog was thought to be due to the smoke produced by incomplete combustion and its byproduct the sulfur oxides, and the dust was thought to play the secondary role. In new sense, hazardous is the photochemical smog which is produced by combination of light energy and the hydrocarbons and oxidant in the air. The Yonsei University Institute for Environmental :pollution Research launched a project to determine the relationship between the pollution and the medical, ophthalmological and rhinopharyngological disorders. The students (469) of the "S" Technical School in the most heavily polluted area in Pusan (Uham Dong district) were compared with those (345) of "K" High School in the less polluted area. The investigated group had those with subjective symptoms twice as much as the control group, 22.6% (106) in investigated group and 11.3% (39) in the control group. Among those symptomatic students of the investigated group. There were 29 with respiratory symptoms (29%), 22 with eye symptoms (21%), 50 with stuffy nose and rhinorrhea (47%), and 5 with sore thorat (5%), which revealed that more than half the students (52%) had subjective symptoms of the rhinopharyngological aspects. Physical examination revealed that the investigated group had more number of students with signs than those of the control group by 10%, 180 (38.4%) versus 99 (28.8%). Among the preceding 180 students of the investigated group, there were 8 with eye diseases (44%), 1 with respiratory disease (0.6%), 97 with rhinitis (54%), and 74 with pharyngotonsillitis (41%) which means that 95% of them had rharygoical diseases. The preceding data revealed that the otolaryngological diseases are conspicuously outnumbered in the heavily polluted area, and that there must be very close relationship between the air pollution and the otolaryngological diseases, and the anti-pollution measure is urgently needed.

  • PDF

Herbicidal Activities of Trichosanthes kirilowii Maxim Extracts (하늘타리 추출물의 제초활성)

  • Yun, Young Beom;Byeon, Ri Na;Jang, Se Ji;Hyun, Kyu Hwan;Shin, Dong Young;Kim, Sang Su;Kim, Do Ik;Kwon, Oh Do;Kuk, Yong In
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.242-247
    • /
    • 2013
  • Currently, methods for controlling weeds in organically produced crops have not been as effective as conventional methods. This research was carried out to determine the herbicidal effects of leaf, stem, fruit, root extracts of Trichosanthes kirilowii. The extraction methods used were water, boiling water and ethanol. The characteristics of potential herbicidal components among extraction methods were investigated by using the following solvent fractions: hexane, chloroform, ethyl acetate, butanol, and water. Generally, water extracts provided the best on inhibition of germination rate, plant height, and root length in cucumber and barley. Specifically, extractions made from fruit parts of T. kirilowii provided the greatest inhibition effect on plant growth in cucumber and barely. Inhibition of germination rate, plant height, and root length in cucumber and barley in solvent fractions was the best in water fractions, but there were no significant differences among the other fractions. Digitaria siliaris and Solanum nigrum were controlled 80-100% by 5% extractions of water fraction. However, there were no herbicidal effects from foliar treatment in cucumber, barley, black nightshade, and henry crabgrass by 5% extractions of the water fraction. These results show that extractions of T. kirilowii can be used for controlling some weeds in organically produced crops.

Variation of Cadmium and Zinc Content in Paddy Soil and Rice from the Janghang Smelter Area (장항제련소 지역의 토양과 수도체중 Cd 및 Zn 함량의 변화)

  • Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.131-141
    • /
    • 1994
  • To investigate differences in Cd and Zn contents in paddy soils and rice plants polluted by aerial emissions from the Janghang smelter, soil samples in the different directions and at the surface (0-15cm) and subsurface (15-30cm) in 1982 and 1990, and rice plants at the corresponding sampling sites in 1990 were collected from the Janghang Smelter Area. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with a mixture of $HNO_3$ and $HClO_4$for analyzing by atomic absorption spectrophotometry. The Cd and Zn contents in soils ranged from 0.09 to 4.42 and from 16.0 to 959.5mg $kg^{-1}$, respectively. The average contents of Cd and Zn in 1990 were higher than those in 1982. The Cd and Zn contents of soils near the center of the smelter were higher than those of soils farther from the center and also decreased in the order of east > north-north east > north east > north. The Cd and Zn levels in surface soils were higher than those in subsurface soils. The contaminated areas of Cd and Zn were within 4km in the east, and within 3km in the north-north east and the north east. Metal contents in brawn rice were the lowest in rice plants. The Cd content of brown rice was one sixth of that in leaf blade and in leaf sheath. The Cd content of leaf blade, stem and panicle axis were significantly correlated with the levels of Zn, Cu and Pb in soils, and Zn content of stem was significantly correlated with the levels of Cu and Pb. The Cd and Zn content in brown rice ranged from 0.05 to 0.25mg $kg^{-1}$ and from 10.5 to 30.9㎎ $kg^{-1}$ in the smelter area, respectively.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF