• 제목/요약/키워드: $Na{\ddot{i}}ve$ bayes

검색결과 32건 처리시간 0.022초

단순 베이즈 분류에서의 범주형 변수의 선택 (Categorical Variable Selection in Naïve Bayes Classification)

  • 김민선;최호식;박창이
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.407-415
    • /
    • 2015
  • 단순 베이즈 분류($Na{\ddot{i}}ve$ Bayes classification)는 출력변수가 주어졌을 때 입력변수들이 조건부 독립이라는 가정에 기반한다. 단순 베이즈 가정은 비현실적이지만 고차원의 확률 추정 문제를 일련의 일차원 확률 추정 문제로 단순화 시킨다는 장점이 있으며, 특히 스팸 메일 필터링, 추천 시스템(recommendation system) 등 방대한 데이터를 다루는 분야야에서 흔히 사용된다. 본 논문에서는 입력변수와 출력변수간의 카이제곱 통계량에 기반한 변수선택법을 제안한다. 이 방법은 단순 베이즈 분류의 장점인 데이터 처리 및 계산의 단순성을 유지하면서도 설명력이 있는 변수를 선택할 수 있으며 SNP(single nucleotide polymorphism)에 의한 질병의 분류 등의 초고차원 혹은 빅데이터에서 유용할 것으로 기대된다.

Na$\ddot{i}$ve Bayes 방법론을 이용한 개인정보 분류 (Personal Information Detection by Using Na$\ddot{i}$ve Bayes Methodology)

  • 김남원;박진수
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.91-107
    • /
    • 2012
  • 인터넷의 성장과 개인의 참여는 사생활 정보 보호에 관련된 비효율적 관리 방안에 대한 문제의식을 불러일으키고 있으며 이를 해결하기 위한 여러 연구들이 이루어지고 있다. 본 연구에서는 기존에 존재하는 문서 분류 방법론을 이용하여 개인의 사적 공간을 나타내는 프라이버시의 항목 중 개인을 식별할 수 있거나 개인이 민감해 할 수 있는 사생활 정보를 담고 있는 문서를 탐지 혹은 분류하는 방법에 대해서 다룬다. 논문의 실험에서 기존의 학습데이터에 추가적으로 개인정보의 유형에 관련된 하위 학습 데이터를 추가함으로써 자동 문서 분류 알고리즘의 성능 측정치를 높이는 것을 시도하였다. 또한 개인정보의 유형에 따라 알고리즘에 효과적으로 적용하는 방향을 제시하기 위하여 기존 논문에서 나타난 개인정보의 유형들을 분석하였다. 개인정보 관련 문서로 분류된 학습 대상과 함께 개인정보에 영향력이 있는 개인정보 유형들을 추가 학습시켜 알고리즘이 학습하는 문서 자질(feature)의 질(quality)을 높였다. 높아진 학습 자질의 질로 인하여 기존의 Na$\ddot{i}$ve Bayes 방법론을 이용한 평가 측정치가 높아질 수 있었다.

소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교 (Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems)

  • 김찬주;황규백
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권5호
    • /
    • pp.345-349
    • /
    • 2009
  • 소결 북마킹(social bookmarking) 시스템은 사용자가 북마크를 저장하고 공유할 수 있는 플랫폼을 제공하는 웹 기반(web-based) 시스템으로 폭소노미(folksonomy)를 이용한 대표적인 웹2.0 서비스이다. 소셜 북마킹 시스템에서의 스패머(spammer)란 자신들의 이익을 위해서 시스템을 고의적으로 악용하는 사람을 말한다. 스패머는 많은 양의 잘못된 정보를 시스템에 포스팅(posting)하기 때문에 전체 소셜 북마킹 시스템의 리소스(resource)를 쓸모없게 만들어 버린다. 따라서, 스패머를 빠른 시간 안에 탐지하고 그들의 접근을 차단하는 것은 시스템의 붕괴를 방지하기 위해 중요하다. 본 논문에서는 사용자가 사용한 태그에 대한 데이터를 추출하여, 사용자가 스패머 인지 아닌지를 예측하는 모델을 기계학습의 다양한 방법을 적용하여 생성한 후 그 성능을 비교해 보았다. 구체적으로, 결정테이블 (decision table, DT), 결정트리(decision tree, ID3), 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier), TAN(tree-augmented $na{\ddot{i}}ve$ Bayes) 분류기, 인공신경망(artificial neural network)의 방법을 비교하였다. 그 결과 AUC(area under the ROC curve)와 모델 생성시간을 고려하였을 때 나이브 베이즈 분류기가 가장 만족할 만한 성능을 보였다. 나이브 베이즈 분류기의 분류 결과가 가장 좋았던 이유는 성능을 비교하는 데 사용된 AUC가 결정트리 계열의 방법(ID3 등)보다 나이브 베이즈 분류기에서 일반적으로 높게 나오는 경향이 있다는 것과, 스패머 탐지 문제가 선형으로 분리 가능한 경우(lineally separable)와 유사할 가능성이 높기 때문으로 여겨진다.

Machine Learning Based Keyphrase Extraction: Comparing Decision Trees, Naïve Bayes, and Artificial Neural Networks

  • Sarkar, Kamal;Nasipuri, Mita;Ghose, Suranjan
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.693-712
    • /
    • 2012
  • The paper presents three machine learning based keyphrase extraction methods that respectively use Decision Trees, Na$\ddot{i}$ve Bayes, and Artificial Neural Networks for keyphrase extraction. We consider keyphrases as being phrases that consist of one or more words and as representing the important concepts in a text document. The three machine learning based keyphrase extraction methods that we use for experimentation have been compared with a publicly available keyphrase extraction system called KEA. The experimental results show that the Neural Network based keyphrase extraction method outperforms two other keyphrase extraction methods that use the Decision Tree and Na$\ddot{i}$ve Bayes. The results also show that the Neural Network based method performs better than KEA.

가상예제를 이용한 $Na{\ddot{i}}ve$ Bayes 분류기 성능 향상 (Improving Performance for $Na{\ddot{i}}ve$ Bayes Classifier Using Virtual Examples)

  • 이유정;강병호;강재호;류광렬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.655-657
    • /
    • 2005
  • 기계학습에서 분류는 훈련 예제들로 학습하여 생성한 분류기를 활용하여 새로운 예제에 어느 한 범주를 부여하는 것을 말한다. 일반적으로 분류의 성능 즉 정확도의 향상은 학습 알고리즘을 개선하거나 훈련예제 집합을 변형시킴으로써 가능하다. 본 논문에서 소개하는 가상예제를 이용한 분류기 성능 향상 방안은 후자에 속한다. 실세계 분류문제에서 많은 수의 훈련예제들을 수집하는 일은 대상문제에 따라 비용이 많이 드는 경우가 있다. 또한 적은 수의 훈련예제를 학습해 생성한 분류기는 분류성능이 좋지 않을 수 있다. 본 논문에서는 이런 문제를 해결하기 위해서 가상예제를 생성해 훈련예제 집합에 추가하는 방안을 제안하고자 한다. 가상예제를 이용한 분류성능 향상방안이 $Na{\ddot{i}}ve$ Bayes 학습 알고리즘 성능 개선에 효과가 있음을 실험을 통해 확인하였다.

  • PDF

포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류 (Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers)

  • 홍진혁;민준기;조웅근;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.886-895
    • /
    • 2006
  • 지문분류는 사전에 정의된 클래스로 입력된 지문을 분류하여 자동지문인식 시스템에서 비교해야할 지문의 수를 줄여준다. 지지벡터기계(support vector machine; SVM)는 패턴인식 분야에서 널리 사용되고 있을 뿐만 아니라 지문분류에서도 높은 성능을 보이고 있다. SVM은 이진클래스 분류기이기 때문에 다중클래스 문제인 지문분류를 위해서 적절한 분류기 생성과 결합 기법이 필요하며, 본 논문에서는 일대다(one-vs-all; OVA) 방식으로 구성된 SVM을 naive Bayes(NB) 분류기를 이용하여 동적으로 구성하는 분류방법을 제안한다. 지문분류에서 대표적으로 사용되는 특징인 FingerCode와 지문의 구조적 특징인 특이점과 의사융선을 사용하여 OVA SVM과 NB 분류기를 학습하고, 포섭구조의 분류기를 구성하여 효과적인 지문분류를 수행한다. NIST-4 데이타베이스에 제안하는 방법을 적용하여 5클래스 분류에 대해서 90.8%의 높은 분류율을 획득하였으며, OVA 전략의 SVM을 다중클래스 분류문제에 적용할 때 발생하는 동점문제를 효과적으로 처리하였다.

TF-IDF와 Naïve Bayes 분류기를 활용한 문서 분류 기법 (Text Document Classification Scheme using TF-IDF and Naïve Bayes Classifier)

  • 유종열;현상현;양동민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.242-245
    • /
    • 2015
  • 최근 디지털 경제의 확산으로 대규모의 데이터들이 생성되는 빅데이터 시대가 도래하고 있다. 이러한 빅데이터에서 비정형 데이터 중에서 기술문서, 기밀문서, 허위정보문서 등 유출 시 심각한 문제가 발생하는 텍스트 문서들이 존재한다. 이러한 문제를 방지하기 위해 비정형 텍스트 문서를 분류하고 처리하는 기술의 필요성이 크게 증가하고 있다. 본 논문에서는 TF-IDF와 $Na{\ddot{i}}ve$ Bayes 문서 분류 기법을 이용하여 비정형 텍스트 문서들을 정확하게 분류하는 기법을 제안한다. 제안된 기법의 성능평가를 위해서 파이썬 라이브러리의 TF-IDF와 $Na{\ddot{i}}ve$ Bayes 분류 기능을 활용하여 문서 분류기를 구현한다.

  • PDF

A novel classification approach based on Naïve Bayes for Twitter sentiment analysis

  • Song, Junseok;Kim, Kyung Tae;Lee, Byungjun;Kim, Sangyoung;Youn, Hee Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2996-3011
    • /
    • 2017
  • With rapid growth of web technology and dissemination of smart devices, social networking service(SNS) is widely used. As a result, huge amount of data are generated from SNS such as Twitter, and sentiment analysis of SNS data is very important for various applications and services. In the existing sentiment analysis based on the $Na{\ddot{i}}ve$ Bayes algorithm, a same number of attributes is usually employed to estimate the weight of each class. Moreover, uncountable and meaningless attributes are included. This results in decreased accuracy of sentiment analysis. In this paper two methods are proposed to resolve these issues, which reflect the difference of the number of positive words and negative words in calculating the weights, and eliminate insignificant words in the feature selection step using Multinomial $Na{\ddot{i}}ve$ Bayes(MNB) algorithm. Performance comparison demonstrates that the proposed scheme significantly increases the accuracy compared to the existing Multivariate Bernoulli $Na{\ddot{i}}ve$ Bayes(BNB) algorithm and MNB scheme.

A Novel Method for a Reliable Classifier using Gradients

  • Han, Euihwan;Cha, Hyungtai
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.18-20
    • /
    • 2017
  • In this paper, we propose a new classification method to complement a $na{\ddot{i}}ve$ Bayesian classifier. This classifier assumes data distribution to be Gaussian, finds the discriminant function, and derives the decision curve. However, this method does not investigate finding the decision curve in much detail, and there are some minor problems that arise in finding an accurate discriminant function. Our findings also show that this method could produce errors when finding the decision curve. The aim of this study has therefore been to investigate existing problems and suggest a more reliable classification method. To do this, we utilize the gradient to find the decision curve. We then compare/analyze our algorithm with the $na{\ddot{i}}ve$ Bayesian method. Performance evaluation indicates that the average accuracy of our classification method is about 10% higher than $na{\ddot{i}}ve$ Bayes.

확장된 나이브 베이즈 분류기를 활용한 질문-답변 커뮤니티의 질문 분류 (Modified Na$\ddot{i}$ve Bayes Classifier for Categorizing Questions in Question-Answering Community)

  • 연종흠;심준호;이상구
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.95-99
    • /
    • 2010
  • 소셜 미디어(social media)는 블로그, 소셜 네트워크, 위키 등과 같이 사용자의 참여로 만들어지는 정보 컨텐츠이다. 사용자가 작성한 질문에 다른 사용자들이 답변을하는 질문-답변 커뮤니티 서비스도 이러한 소셜 미디어의 한 가지로서 지난 몇 년간 많은 양의 정보를 축적해왔다. 하지만 축적된 질문-답변의 양이 많아질수록 이전의 질문을 정확히 검색하는 것은 점점 어려운 작업이 되고 있다. 본 논문에서는 질문-답변 커뮤니티의 효율적인 정보 검색을 위해 확장된 나이브 베이즈 분류기(Na$\ddot{i}$ve Bayes classifier)를 이용하여 질문을 그 목적에 따라 정보형, 제안형, 의견형으로 자동 분류하는 기법을 제안한다. 정확한 분류를 위해 분류기는 질문-답변 문서의 구조적인 특징을 활용한다. 실제 질문-답변 커뮤니티의 질문들에 대해 실험을 수행한 결과 71.2%의 분류 정확도를 보였다.