• Title/Summary/Keyword: $Na^+/Ca^{2+}$ exchange ratio

Search Result 28, Processing Time 0.021 seconds

Characterization of Cation Exchange and Cesium Selectivity of Synthetic Beta-Dicalcium Silicate Hydrate

  • El-Korashy, S.A.
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.515-522
    • /
    • 2002
  • Solid beta-dicalcium silicate hydrate $(\beta-C_2SH)$ synthesized under hydrothermal conditions at $240^{\circ}C$ and Ca/Si=2 molar ratio shows cation exchange properties towards divalent metal cations such as Fe, Cu, Zn, Cd, or Pb. The ability of metal cation uptake by the solid was found to be in the order: $Fe^{2+}$$Cu^{2+}$$Zn^{2+}$$Cd^{2+}$ = $Pb^{2+}$. Cesium selectivity of the solid was demonstrated in the presence of univalent cation such as $Li^+$, $Na^+$ and $K^+$ and divalent cations such as $Ca^{2+}$, $Mg^{2+}$ and $Ba^{2+}$, which are one hundred times more concentrated than the $Cs^+$. The uptake of $Cs^+$ is maximum in the presence of $Mg^{2+}$ whereas it is minimum in the presence of $K^+$. The different affinities of ${\beta}-C_2SH$ towards divalent metal cations can be used for the separation of those ions. Due to its selectivity for cesium it can be used in partitioning of radioactive Cs+ from nuclear wastes containing numerous cations. The mechanism of the metal cation exchange and cesium selectivity reactions by the solid is studied.

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations (차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁)

  • Baek, Woohyeon;Ha, Suhyeon;Hong, Sumin;Kim, Seonah;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.59-71
    • /
    • 2016
  • To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.

Geochemical Analysis and Fates of Pathogenic Indicating Bacteria on Seawater Intrusion in a Sand Box Model (인공 대수층내에서 발생하는 해수침투의 지화학적 분석 및 병원성 지표 미생물의 사멸 특성)

  • Lee, So-Jung;Park, Hun-Ju;Sung, Eun-Hae;So, Myung-Ho;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.385-392
    • /
    • 2008
  • In this study, seawater intrusion was assessed employing a kind of biological parameters such as Escherichia coli and Enterococcus faecalis while lab-prepared reclaimed water was recharged to prevent seawater intrusion. Chemical factors indicating seawater intrusion such as Cl$^-$, Ca$^{2+}$, Mg$^{2+}$ and specific conductivity were also simultaneously investigated where an ion exchange between a matrix in artificial aquifer and cations in solution was estimated. Both Escherichia coli and Enterococcus faecalis were shown to be very sensitive against degree of salinity during saline water intrusion. Enterococcus faecalis more strongly resisted against salinity than that of Escherichia coli. The ratio of Enterococcus faecalis divided by E. coli in the process of seawater intrusion increased up to more than 50$\sim$100 times in 18 hours whereas E. coli was died off more than 90% during pumping and recharge rate kept at 10 mL/min. However, when the rates of both recharge and pumping was kept at 5 mL/min, Enterococcus faecalis / Escherichia coli was sustained in the range of 2.5$\sim$5.0, while Escherichia coli showed dimished death rate. Chemical factors such as Cl$^-$, Ca$^{2+}$, Mg$^{2+}$ and specific conductivity showed more than 0.9 of high correlation each other well explaining the degree of seawater intrusion. The degree of ion exchange between artificial aquifer and saline water can be efficiently interpreted by both minus $\Delta$Na, $\Delta$Mg variation and positive $\Delta$Ca variation.

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O) (염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Cho, Kye Hong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.399-409
    • /
    • 2021
  • In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.

Studies on the analysis of phytin by the Chelatometric method (Chelate 법(法)에 의(依)한 Phytin 분석(分析)에 관(關)한 연구(硏究))

  • Shin, Jai-Doo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.1-13
    • /
    • 1968
  • Phytin is a salt(mainly calcium and magnesium) of phytic acid and its purity and molecular formula can be determined by assaying the contents of phosporus, calcium and magnesium in phytin. In order to devise a new method for the quantitative analysis of the three elements in phytin, the chelatometric method was developed as follows: 1) As the pretreatment for phytin analysis, it was ashfied st $550{\sim}600^{\circ}C$ in the presence of concentrated nitric acid. This dry process is more accurate than the wet process. 2) Phosphorus, calcium and megnesium were analyzed by the conventional and the new method described here, for the phytin sample decomposed by the dry process. The ashfied phytin solution in hydrochloric acid was partitioned into cation and anion fractions by means of a ration exchange resin. A portion of the ration fraction was adjusted to pH 7.0, followed by readjustment to pH 10 and titrated with standard EDTA solution using the BT [Eriochrome black T] indicator to obtain the combined value of calcium and magnesium. Another portion of the ration fraction was made to pH 7.0, and a small volume of standard EDTA solution was added to it. pH was adjusted to $12{\sim}13$ with 8 N KOH and it was titrate by a standard EDTA solution in the presence of N-N[2-Hydroxy-1-(2-hydroxy-4-sulfo-1-naphytate)-3-naphthoic acid] diluted powder indicator in order to obtain the calcium content. Magnesium content was calculated from the difference between the two values. From the anion fraction the magnesium ammonium phosphate precipitate was obtained. The precipitate was dissolved in hydrochloric acid, and a standard EDTA solution was added to it. The solution was adjusted to pH 7.0 and then readjusted to pH 10.0 by a buffer solution and titrated with a standard magnesium sulfate solution in the presence of BT indicator to obtain the phosphorus content. The analytical data for phosphorus, calcium and magnesium were 98.9%, 97.1% and 99.1% respectively, in reference to the theoretical values for the formula $C_6H_6O_{24}P_6Mg_4CaNa_2{\cdot}5H_2O$. Statical analysis indicated a good coincidence of the theoretical and experimental values. On the other hand, the observed values for the three elements by the conventional method were 92.4%, 86.8% and 93.8%, respectively, revealing a remarkable difference from the theoretical. 3) When sodium phytate was admixed with starch and subjected to the analysis of phosphorus, calcium and magnesium by the chelatometric method, their recovery was almost 100% 4) In order to confirm the accuracy of this method, phytic acid was reacted with calcium chloride and magnesium chloride in the molar ratio of phytic: calcium chloride: magnesium chloride=1 : 5 : 20 to obtain sodium phytate containing one calcium atom and four magnesium atoms per molecule of sodium phytate. The analytical data for phosporus, calcium and magnesium were coincident with those as determine d by the aforementioned method. The new method employing the dry process, ion exchange resin and chelatometric assay of phosphorus, calcium and magnesium is considered accurate and rapid for the determination of phytin.

  • PDF

A Study on the Preparation of Antibacterial Biopolymer Film

  • Cho, Dong-Lyun;Na, Kun;Shin, Eun-Kyung;Kim, Hyun-JIn;Lee, Ki-Young;Go, Jin-Hwan;Choi, Choon-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.193-198
    • /
    • 2001
  • Preparation of antibacterial biopolymer film which is suitable for food packaging film was investigated using K-carrageenan as a base material. K-Carrageenan showed good biodegradability and film-forming characteristic but poor mechanical properties under humid condition. Also, various bacteria grew well on its surface. The poor mechanical properties could be improved by mixing with alginate at a 1:1 ratio and crosslinking with $CaCl_2$ solution. Antibacterial property coul be provided by modifying the K-carrageenan film surface with acrylic acid plasma followed by ion-exchange with $Ag^+$ ions. Such prepared film still showed good biodegradability by various fongi.

  • PDF

Isolation and Characterization of Acidic Polysaccharides Activating Complement System from the Hot Water Extracts of Pteridium aquilinum var. latiusculum (고사리 열수 추출물로부터 보체계 활성화 산성 다당의 분리 및 특성)

  • O, Byeong-Mi;Gwon, Mi-Hyang;Na, Gyeong-Su
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.3
    • /
    • pp.159-168
    • /
    • 1994
  • From the hot water extract of bracken(Pteridium aquilinum var. latiusculum), a Korean win edible plant, anti-complementary acidic polysaccharides were Isolated. Crude polysaccharide fraction(HPA-1) was obtain ed by methanol reflux, ethanol precipitation, dialysis, and lyophilization. HPA-1 contained 81.80% of total sugar, 30.40% of uronic acid, and 15.60cA of protein. HPA 1 was purified consecutively by cetavlon fractionation and chromatography including ion exchange nth DEAE-Sepharose CL 6B and gel permeation with Sephadex G-100 and Sepharose CL-6B. HPA-2- IVa and HPA-Va-2 were nearly homogeneous on HPLC and had 500,000 and 560,000 daltons of molecular weights, respectively. HPA-2-Wa consisted of fucose, galacturonic acid, and glucuronic acid at the molar ratio of 1.40 : 0.97 : 1.88. HPA-2-Va 2 was composed of rhamnose, galactose, and galacturonic acid at the molar ratio of 1.00 : 1.38 : 1.39. The polysaccharides were found to activate the C3 component both In the presence and In the absence of Ca2+ through the crossed-immunoelectrophoresis suggesting that those Involved in both classical and alternative complement pathway.

  • PDF

Characteristics of Groundwater and Soil Contamination in Hallim Area of Jeju Island (제주도 한림지역의 지하수와 토양의 오염특성)

  • Hyun, Geun-Tag;Song, Sang-Tak;Joa, Dal-Hee;Ko, Yong-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.44-51
    • /
    • 2010
  • Contamination of groundwater from point and non-point sources is one of major problems of water resource manangement in Jeju island. This study characterized groundwater and soil contamination in Hallim area which is one of the areas of significantly contaminated soil and groundwater in Jeju Island. The amount of loaded contaminant (ALC) of Jeju area was estimated as 13,212 ton N/yr and 3,210 ton P/yr, The ALC of Hallim area was amounted to 2,895 ton N/yr and 1,102 ton P/yr, which accounted for 21.9% and 34.3% of the Jeju's ALC, respectively. The soil pH values (5.6-5.9) were not much different in land use areas. By contrat, average cation exchange capacity (CEC) of 14.1 $cmol^+/kg$ was high comparing to the nationwide range of 7.7-10.9 $cmol^+/kg$. Further, Sodium adsorption ratios (SARs) of horse ranch, pasture, and cultivating land for livestock were as high as 0.19, 0.17, and 0.16 respectively, comparing to the other landuse areas. Nitrate nitrogen at 22.2% of total groundwater wells exceeded 10 mg/L (the criteria of nitrate nitrogen for drinking water), averaginged 6.62 mg/L with maximum 28.95 mg/L. Groundwater types belonged to Mg-$HCO_3$, Na-$HCO_3$, Ca-$HCO_3$, and Na-Cl, among which Mg-$HCO_3$ type occupied more than 70% of the total samples, indicating the presence of anthropogenic sources. The concentration of nitrate nitrogen was negatively related to altitude and well depth, and positively related to the concentration of Ca, Mg, and $SO_4$ which might originate from chemical fertilizer. The ratio of nitrogen isotopes was estimated as an average of 8.10$^{\circ}/_{\circ\circ}$, and the maximum value of 17.9$^{\circ}/_{\circ\circ}$. According to the nitrogen isotope ratio, the most important nitrogen source was assessed as chemical fertilizer (52.6%) followed by sewage (26.3%) and livestock manures (21.1%).

Soil Properties Under Different Vegetation Types in Chittagong University Campus, Bangladesh

  • Akhtaruzzaman, Md.;Roy, Sajal;Mahmud, Muhammad Sher;Shormin, T.
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • Soil physical and chemical properties at three layers such as top (0-10 cm), middle (10-20 cm) and bottom (20-30 cm) layers under three different vegetation types were studied. Soil samples were collected from Acacia forest, vegetable and fallow lands of Chittagong university campus, Chittagong, Bangladesh. Results showed that sand was the dominant soil particle followed by clay and silt fractions in all soil depths under different vegetation types. Soils of fallow land showed the highest values of bulk density while forest soils had the lowest values at three depths. Acacia forest soil having lowest values of dispersion ratio (DR) is less vulnerable while fallow soil with highest DR values is more vulnerable to soil erosion. The lower pH value at all soil layers in three ecosystems represented that soils under study are acidic in nature. Contents of organic matter, total nitrogen, exchangeable cations (Ca2+, Mg2+, K+ and Na+) and cation exchange capacity (CEC) were observed higher in Acacia forest soils compared to vegetable and fallow soils. Only soils of vegetable land had higher level of available phosphorus in three layers than that of other two land covers. The study also revealed that different soil properties were observed in three different vegetation types might be due to variation in vegetation and agronomic practices.

Salt Effect of Metal Ion Substituted Membranes for Water-Alcohol Systems Using Pervaporation Processes (투과증발공정을 이용한 물-알코올계에 대한 금속이온이 치환된 이온교환막의 염효과 연구)

  • 임지원;전지현
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2001
  • The hydorgen ions in PVA/SSA membranes were substituted with monovalent metal ions, $Li^{+}$, $Na^{+}$, $K^{+}$, divalent metal ion forms, $Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$, trivalent metal ion forms, $Al^{+}$. The effect of exchange with metal ions was investigated through the swelling measurement and pervaporative experiments for water-ethanol and water-methanol mixtures at various operating conditions. In addition, ESCA analysis was carried out to study the substitution of the metal ions in membranes. The swelling ratio decerased in the sequence of $Li^{+}$, $Na^{+}$, $K^{+}$ and this might be due to the 'salting-out` effect while the swelling ratios for divalnet and trivalent ion-substituted membranes were affected by the combined effect of salting-out, electrostatic crosslinking and extent of metal ion substitution. For the pervaporation performance, PVA/SSA-$H^{+}$membrane showed the lowest flux and highest separation factor for all aqueous ethanol solutions. The typical results of the flux, 59 g/$m^{2}$hr and the separation factor, 44 were obtained at $50^{\circ}C$ for 90% ethanol aqueous mixture. For water-methanol solutions, the PVA/SSA membranes substituted with monovalent PVA/SSA membranes substituted with divalent and tribalent metal ions, both `salting-out` and electrostatic effects affected the pervaporative results.

  • PDF