• Title/Summary/Keyword: $Na^+$ channel blocker

Search Result 56, Processing Time 0.029 seconds

Effect of Exocytosis Factor on Spontaneous Zona Pellucida Hardening during in Vitro Culture of the Mouse Oocytes (생쥐 난자 배양시 외분비 관련 요소들이 자발적 투명대 경화 현상에 미치는 영향)

  • Kang, Hye-Na;Bae, In-Ha;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • "Spontaneous" hardening of the zona pellucida of mouse oocytes during in vitro culture is most likely due to cortical granules exocytosis. Thus the purpose of the present study was to determine whether the exocytosis factor is involved in spontaneous zona pellucida hardening during in vitro culture of the mouse. The results obtained form these experiments were summarized as follows; 1. When a protein synthesis inhibitor(100${\mu}g$/ml puromycin) was added to the culture medium, it did not prevent spontaneous ZPH of mouse oocyte during in vitro culture. 2. Calmodulin antagonists (trifluoperazine and chlorpromazine) and calcium channel blocker (verapamil) had no inhibitory effect in spontaneous ZPH. 3. A microtubule assembly inhibitor, colcemid had some inhibitory effect on spontaneous ZPH. 4. Treatment with a microfillament formation blocker(cytochalasin-B) at 1${\mu}g$/ml concentration, resulted in the excellent inhibitory effect on spontaneous ZPH. However cytochalasin-B did not inhibit ethanol-induced ZPH.

  • PDF

Effect of Na, K, Ca and Mg ions on the Action Potential of the Sinoatrial Node in the Rabbit (토끼 동방결절 활동전압에 대한 Na, K, Ca 및 Mg 이온의 영향)

  • Lee, Jeong-Ryeol;Eom, Yung-Ui
    • Journal of Chest Surgery
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • Isolated sinus node cells of the rabbit were used to assess the effects of extracellular Na, K, Ca and Mg concentrations on cardiac pacemaker activity. With intracellular glass micro-electrodes spontaneous action potentials of SA node were recorded and the effects of various ions and their blockers were analyzed in terms of the cycle length, the amplitude and the duration of action potentials, the results obtained were as follows. 1. Sodium reduction [up to 30%] decreased the amplitude of action potential and lengthened the cycle length. TTX, specific blocker of Na channel slightly lengthened the cycle length. 2. Increasing potassium ion concentration, the duration of action potential decreased and the frequency increased in 6mM, however, spontaneous action potential was stopped in 24 mM. Barium ion known to be decreasing K conductance increased the duration of action potential but no significant change in the cycle length was noticed. 3. Calcium ion has shortening effect on the duration and the cycle length of action potential but not with dose-dependent manner. Cadmium ion .[0.02mM] lengthened cycle length and the duration of action potential. 4. Increasing the concentration of magnesium ion the cycle length was lengthened, significantly.

  • PDF

Effect of Methoxyverapamil on Renal Function of Dogs (개의 신장기능에 미치는 메톡시베라파밀의 영향)

  • Ko, Suk-Tai;Lee, Han-Goo;Na, Han-Kwang
    • YAKHAK HOEJI
    • /
    • v.36 no.1
    • /
    • pp.46-55
    • /
    • 1992
  • Methoxyverapamil, $Ca^{2+}$ channel blocker, when given intravenously by means of bolus, produced the transient increase of urine flow, and then methoxyverapamil was infused in this experiments. Methoxyverapamil, when infused into vein, elicited the increase of urine flow ancampanied with the increased glomeralar filtration rate(GFR), renal plasma flow(RPF), excretion amounts of sodium and potassium in urine($E_{Na},\;E_k$) and osmolar clearance(Cosm), wherease produced the no change of free water clearance($C_{H2O}$) and the reduction of reabsorption rates of sodium and potassium in reral tubules($R_{Na},\;R_k$). Methoxyverapamil, when infused into a renal artery, exhibited the diuretic action in only infused Kidney, at this time changes of renal function were the same aspect to that of intravenously infused methoxyverapamil. Methoxyverapamil, when infused into a carotid artery, exhibited the decreased urine flow along with the reduction of Cosm, $C_{H2O}\;and\;E_{Na}$. Above results suggest that methoxyverapamil possess both the diuretic action by direct action in kidney and antidiuretic action through the central function.

  • PDF

The Cytotoxic Mechanisms of Bacillus thuringiensis $\delta$-endotoxin, a Bioinsecticide : Effect on $K^+$ Channel of Insect Cell Lines.

  • Seo, Young-Rok;Han, Sung-Sik;Yu, Yong-Man;Lee, Jun-Jae;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.70-70
    • /
    • 1996
  • The cytotoxicological effect of Bt 1-endotoxin, well-known as a bioinsecticide, was investigated on ion channel of insect cell lines. This study attempted to evaluted the specificity by simple experiment to measure the cell swelling using lepidopteran cell lines in isotonic solution containing only one cation. Cell swelling was stimulated in KCI-sucrose isotonic solution as well as TC-100 media containg in solubilized crystal 5-endotoxin. It suggested that the cell swelling by Bt toxin have a relation to K+ channel. The cell swelling may be due to the stimulation K+ influx and simultaneously the penetration of H2O induced by Bt toxin, because the stimulation of swelling was observed with the solubilized toxin in KCI-sucrose isotonic solution, but not in sucrose isotonic solution. Moreover the specific K+ channel blocker, such as 4-arnjnopyrimidine(4-AP) and ouabain, showed the significant effect on the cell swelling induced by Bt toxin. The increasement of the cell swelling induced by 4-AP suggested to be caused by the block of K+ efflux through K+ leak channels. The inhibition of cell swelling by ouabain, which is the well-known inhibitor of Na+, K+-ATPase, suggested to be due to decreasement of K+ influx following diminishment of Na+, K+-ATPase activities.

  • PDF

Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.305-313
    • /
    • 2004
  • The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

Ionic currents elicited by the hypotonic solution in hamster eggs (저장성 용액에 노출된 햄스터 난자에 관찰되는 이온전류의 변화)

  • Choi, Won-yeong;Kim, Yang-mi;Haan, Jae-hee;Huh, Il-oh;Park, Choon-ok;Hong, Seong-geun;Pyu, Pan-dong;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.305-312
    • /
    • 1996
  • Cell volume regulatory mechanisms are usually disclosed by exposure of cell to anisotonic media. If a cell is suddenly exposed to hypotonic media, it swells initially like an osmometer but within minutes regains its original cell volume. This behavior has been labelled as regulatory cell volume decrease(RVD). RVD is believed to result from the loss of permeable ions through the membrane. In this study, we examined hypotonically induced changes in the membrance currents involved in RVD by using whole cell voltage clamp technique in the unfertilized hamster egg. At -40mV of the holding potential, the stationary current was maintained in the hamster egg exposed to isotonic solution composed of, mainly, 115mM NaCl and 40mM mannitol. Hypotonic solution was prepared by removing mannitol. Therefore, the concentrations of $Na^+$ and $Cl^-$ in this hypotonic media were the same as those in the isotonic solution. Following 30 to 60 sec after applying the hypotonic media to the egg, the inward current was evoked. This inward current was eliminated by $100{\mu}M$ 4-acetamido-4'-isothiocyanostil-bene-2,2'-disulfonic acid(SITS), an anion channel blocker, leaving the small outward current component. Further addition of 2mM $Ba^{2+}$, a broad $K^+$ channel blocker, completely abolished the small outward current left even in the presence of SITS during hypotonic stress. These results suggest that $K^+$ and $Cl^-$ move out of cells, resulting in RVD. To test the involvement of $Na^+$ in RVD, 20mM Na-isethionate was substituted for mannitol in isotonic media(135mM $Na^+$) and Na-isethionate (20mM) was freed the hypotonic solution. Only $Cl^-$ concentration in both isotonic and hypotonic media was kept constant at 115mM, whereas concentration of $Na^+$ was lowered in hypotonic solution to 115mM from 135mM in isotonic solution. Hypotonic medium induced the outward current in the egg equilibrated isotonically. This current was reduced by $100{\mu}M$ SITS but was augmented by 2 mM $Ba^{2+}$. In terms of RVD, these results imply that $Cl^-$ efflux is coupled with $K^+$, maybe for electroneutrality during hypotonic stress and/or with $Na^+$ via unknown transport mechanism(s). From the overall results, the hypotonic stress facilitates the movement of $Cl^-$ and $K^+$ out of the hamster egg to regain cellular volume with electroneutrality. If there exist a difference in $[Na^+]_0$ between isotonic and hypotonic solution, another transport mechanism concerned with $Na^+$ may, at least partly, participate in regulatory volume decrease.

  • PDF

Suppression of Peripheral Sympathetic Activity Underlies Protease-Activated Receptor 2-Mediated Hypotension

  • Kim, Young-Hwan;Ahn, Duck-Sun;Joeng, Ji-Hyun;Chung, Seungsoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.489-495
    • /
    • 2014
  • Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ${\omega}$-conotoxin GVIA (CgTx), a selective N-type $Ca^{2+}$ channel ($I_{Ca-N}$) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ${\omega}$-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of $I_{Ca-N}$ which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension.

Inhibitory mechanism of α1-adrenergic stimulation on the release of thyroxine in mouse thyroids (Mouse 갑상선에서 α1-adrenoceptor 자극에 의한 thyroxine 유리 억제기전)

  • Kang, Hyung-sub;Kim, Song-kyu;Kang, Chang-won;Kim, Jin-sang;Lee, Ho-il
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.712-719
    • /
    • 1998
  • Thyroid function is mainly regulated through cAMP and phophatidylinositol, and it is well known that TSH-stimulated thyroxine ($T_4$) release is inhibited by catecholamine from mouse thyroids via the ${\alpha}_1$-adrenoceptor stimulation. Previous study has established that the inhibition of $T_4$ release by ${\alpha}_1$-adrenoceptor stimulation results in activated protein kinase C (PKC). The purpose of this study was to determine if ion transport systems are involved in the inhibition of $T_4$ release elicited by ${\alpha}_1$-adrenergic agonist in mouse thyroids. TSH-, IBMX- and cAMP analogue-stimulated $T_4$ release were significantly inhibited by methoxamine, R59022 (diacylglycerol kinase inhibitor), and MDL (adenylate cyclase inhibitor). TSH-stimulated $T_4$ release could be inhibited by Bay K 8644 and cyclopiazoic acid, but not by verapamil and tetrodotoxin. The addition of nifedipine ($Ca^{2+}$ channel blocker), tetrodotoxin and lidocaine ($Na^+$ channel blockers), but not amiloride (EIPA) and ryanodine, completely blocked the inhibitory effects of methoxamine on $T_4$ release. TSH-stimulated $T_4$ release was also inhibited by benzamil ($Na^+-Ca^{2+}$ exchange inhibitor). TSH-, IBMX- and cAMP-stimulated $T_4$ release were inhibited by methoxamine or R59022, these effects were reversed by nifedipine. but not by verapamil. Furthermore, nifedipine reversed the inhibitory effects of benzamil and R59022 on TSH-stimulated $T_4$ release. These data suggest that the observed ${\alpha}_1$-adrenoceptor-mediated inhibition of $T_4$ release in mouse thyroids is the result of an increase in intracellular $Na^+$ or $Ca^{2+}$ effected via activation of fast $Na^+$ or nifedipine-sensitive $Ca^{2+}$ channels, and that $Na^+-Ca^{2+}$ exchange may play an important role in reducing thyroid hormone by increasing intracellular $Ca^{2+}$.

  • PDF

Nifedipine Enhances Vasodepressor and Natriuretic Responses to Atrial Natriuretic Peptide in Anesthetized Rats (Nifedipine이 Atrial Natriuretic Peptide의 혈압내림효과에 미치는 영향)

  • Lee, Jong-Eun;Choi, Ki-Chul
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.115-121
    • /
    • 1990
  • The interaction between a calcium channel blocker nifedipine and atrial natriuretic peptide (ANP) was examined in normotensive and renal hypertensive rats. The infusion of either ANP or nifedipine produced a significant decrease in mean arterial pressure (MAP). The combined infusion of ANP with nifedipine resulted in a greater fall of MAP than did the infusion of each drug alone. ANP significantly increased urinary volume and excretion of sodium, while nifedipine was without effects. The diuretic/natriuretic effects of ANP were potentiated by the combined infusion with nifedipine. The vasodepressor and renal effects of ANP or nifedipine were qualitatively similar between the normotensive and hypertensive rats. Nifedipine caused an upward and leftward shift of the ANP dose-relaxation curve of the phenylephrine-precontracted thoracic aortic rings isolated from the normotensive rats , suggesting that the vasodilation sensitivity to ANP is increased in the presence of nifedipine. These results indicate that nifedipine enhances the vasodepressor effect of ANP, the likely mechanisms being attributable to a contraction of effective intravascular volume as a consequence of potentiated renal excretion and a greater peripheral vasodilation.

  • PDF

Nitric oxide(NO)-mediated relaxation of bovine retractor penis muscle (소 음경후인근의 Nitric oxide(NO) 매개성 이완)

  • Yang, Il-suk;Chang, Hee-jung;Kang, Tong-mook;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.599-605
    • /
    • 1996
  • This study was designed to examine the mechanism of penile erection in adult bull by analyzing the responses of bovine proximal retractor penile muscle strips(BRP) to electtical field stimulation(EFS), exogenous nitric oxide(NO), NO synthesis precursor(L-arginine), NO synthase inhibitors(L-NAME, L-NMMA), guanylate cyclase inhibitor(methylene blue) and nonspecific potassium channel blocker(tetraethylammonium, TEA) treatments. Isometric tension of BRP was measured using physiograph. Results were summarized as follows: 1. EFS of nonadrenergic noncholinrgic(NANC) nerve in BRP produced frequency-dependent inhibitory responses to the contraction induced by co-treatment of epinephrine, guanethidine and atropine. The inhibitory responses to EFS were blocked by tetrodotoxin(TTX, $1{\mu}M$). 2. Treatment of L-NAME ($10,\;20{\mu}M$) inhibited the relaxation to EFS whereas L-NMMA ($100{\mu}M$) had no effect. 3. Treatment of NO($20,\;40{\mu}M$; as an acidified solution of $NaNO_2$) induced concentration-dependent relaxation whereas preincubation of TTX($1{\mu}M$) and L-NAME($20{\mu}M$) had no effect on the relaxation response. 4. L-arginine treatment(10mM) blocked the inhibitory effect of L-NAME($20{\mu}M$). 5. Pretreatment of methylene blue($40{\mu}M$) reduced the NANC-induced relaxation of BRP. 6. Tetraethylammonium(TEA, 80mM) reduced NANC relaxation. These results suggest that NO may act as a NANC neurotransmitter in BRP and the effects might be mediated by cGMP and potassium channel.

  • PDF