• Title/Summary/Keyword: $N_2O$ Decomposition

Search Result 265, Processing Time 0.021 seconds

Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.651-657
    • /
    • 2008
  • In this study, CNT/$TiO_2$ composites were prepared using surface modified Multiwall carbon nanotube (MWCNT) and titanium n-butoxide (TNB) with benzene. The composites were characterized by nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), FT-IR spectra, and UV-vis absorption spectroscopy. The UV radiation induced photoactivity of the CNT/$TiO_2$ composites was tested using a fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution. Finally, it can be considered that the MB removal effect of the CNT/$TiO_2$ composites is not only due to the adsorption effect of MWCNT and photocatalytic degradation of $TiO_2$, but also to electron transfer between MWCNT and $TiO_2$.

Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives (보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering)

  • Lee, Sea-Hoon;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.

Synthesis of Spinel Phase Manganese Oxide and Its Activation by Hydrogen Reduction (망간산화물의 합성과 수소환원에 의한 활성화)

  • Yang, Chun-Mo;Kim, Soon-Tae;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • For decompose carbon dioxide, manganese oxide was synthesized with $0.25M-MnSO_{4}{\cdot}nH_{2}O$ and 0.5M-NaOH by coprecipitation. We made magnetite deoxidized manganese oxide by hydrogen reduction for 1hour at $330^{\circ}C$. We investigated characteristics of catalyst, hydrogen reduction degree and decomposition rate of carbon dioxide. The structure of the hausmannite certified spinel type. The specific surface area of synthesized hausmannite and deoxidized hausmannite were $22.36m^{2}/g$, $33.56m^{2}/g$ respectively. The decomposition rate of $CO_{2}$ of deoxidized hausmannite was 57%.

Characterization of a Novel MnS-ACF/TiO2 Composite and Photocatalytic Mechanism Derived from Organic Dye Decomposition

  • Zhu, Lei;Jo, Sun-Bok;Jo, Jung-Hwan;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • Activated carbon fiber (ACF) was modified with MnS nanoparticles to prepare MnS-ACF, and it was employed for preparation of MnS-$ACF/TiO_2$ composites with titanium (IV) n-butoxide (TNB). The properties of MnS-$ACF/TiO_2$ composites were characterized by XRD, SEM, and EDX. EDX results showed the presence of C, O, and Ti as major elements and traces of the metal elements Mn and S. The photocatlytic activity was evaluated by degradation of methyl blue (MB) and methyl orange (MO) dye. The results demonstrated that as-prepared samples could effectively photodegrade MB and MO under UV irradiation. Subsequently, the decomposition of MB solution showed the combined effects of adsorptions by ACF and enhanced photocatalytic effect by $TiO_2$. Finally, the photocatalytic effect increased due to photo-induced-electron absorption effect by ACF and electron trap effect by comodified MnS nanoparticles.

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.

Characterization of FePtN Nano-particles Synthesized by Thermal Decomposition and Mixed-gas Nitrification (열분해법과 혼합가스 질화법으로 합성한 FePtN 나노 입자의 특성)

  • Oh, Young Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.129-132
    • /
    • 2016
  • The effect of thermal-nitrification on L1o transfomation in nano-sized FePt particles was studied. As-synthesized FePt nanoparticles by thermal decomposition method have fcc structured phase and their Hc and Ms were 247.34 Oe and 27.308 emu/g, respectively. According to the XRD analysis, phase transformation from fcc (face centered cubic) to fct (face centered tetragonal) structure was revealed by heating under $NH_3+H_2$ mixed-gas atmosphere. Also a slight shift of each (111) peak indicated phase transformation from fcc to fct structure. Hc and Ms of fct FePtN were 1058.2 Oe and 32.718 emu/g, respectively. The nano-sized FePtN magnetic particles synthesized by thermal decomposition method and mixed-gas nitrification are expected for advanced applications such as high density magnetic recording media and biomedical materials.

The Adsorption and Decomposition of NO on a Steped ppt(111) Surface

  • Lee, S.B.;Kang, C.Y.;Park, C.Y.;Kwak, H.T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.02a
    • /
    • pp.113-113
    • /
    • 1995
  • The adsorpption and decompposition of NO on a stepped ppt(111) surface have been studied using thermal desorpption sppectroscoppy and Auger electron sppectroscoppy. NO adsorbs molecularly in two different states of the terrace and the stepp, which are distinguishable in thermal desorpption sppectra. NO dissociates via a bent sppecies at the stepp sites on the basis of vibrational sppectrum data repported ppreviously. The dissociation of NO is activation pprocess : the activation energy is estimated to be about 2 kcal/mol. Increase in the NO dissociation with adsorpption tempperature is expplained by a pprocess controlled by different of the dissociated atomic nitrogen from the stepp to the terrace of the surface. In addition to No and N2, the desorpption ppeak of N2O is observed. We conclude that the formation of N2O is attributed to surface reaction of No and N adsorbed on the surface.

  • PDF

Preparation of the mixed oxide photocatalyst and its quantum yield. (Mixed oxide 광촉매의 제조 및 광분해 효율 평가)

  • Kim, Dong H.;Lee, Tai K.;Kim, Kyung N.;Chungmoo Auh;Kim, Kwang B.;Lee, Seung W.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.45-52
    • /
    • 1995
  • The photocatalytic activity of TiO$_2$ was investigated as a function of added amount of Nb$_2$O$_{5}$, heat treatment temperature and the decomposition rate of 1 mM dichloroacetic acid(DCA). Mixed oxides of TiO$_2$ and Nb$_2$O$_{5}$ was prepared by the sol-gel process. The addition of Nb$_2$O$_{5}$ into TiO$_2$ has deleterious effect on the decomposition rate of DCA, which was decreased as the amount of Nb$_2$O$_{5}$ was increased. The excess electrons due to the doping of Nb$_2$O$_{5}$ into TiO$_2$ can promote the reduction process instead of oxidation or recombination rate with electron holes. The most efficient photocatalyst was the one heat treated at 40$0^{\circ}C$ for an hour as far as the heat treatment temperature is concerned. The lower the pH of the solution, the higher the quantum yield.tum yield.

  • PDF

Decomposition of Acetonitrile by Planar Type Dielectric Barrier Discharge Reactor (평판형 유전체 장벽 방전 반응기에서 Acetonitrile의 분해 특성)

  • 송영훈;김관태;류삼곤;이해완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.105-112
    • /
    • 2002
  • A combined process of non-thermal plasma and catalytic techniques has been investigated to treat toxic gas compounds in air. The treated gas in the present study is $CH_3$CN that has been known to be a simulant of toxic chemical agent. A planar type dielectric barrier discharge(DBD) reactor has been used to generate non-thermal plasma that produces various chemically active species, O, N, OH, $O_3$, ion, electrons, etc. Several different types of adsorbents and catalysts, which are MS 5A, MS 13X, Pt/alumina, are packed into the plasma reactor, and have been tested to save power consumption and to treat by-products. Various aspects of the present techniques, which are decomposition efficiencies along with the power consumption, by-product analysis, reaction pathways modified by the adsorbents and catalysts, have been discussed in the present study.

Application of Photocatalytic Decomposition of Methylene Blue on N-doped TiO2 (질소 도핑 TiO2의 Methylene Blue 광분해 제거에의 적용)

  • Baek, Mi-Hwa;Choi, Su-A;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.707-712
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ particles have been successfully prepared using titanium tetraisopropoxide as the Ti source and urea as the nitrogen source. As-prepared nitrogen-doped $TiO_2$ was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET) and ultraviolet-visible light (UV-vis) absorption spectra techniques. Photocatalytic degradation of Methylene Blue (MB) has been carried out in both solar light (UV-vis) and the visible region (${\lambda}=420nm$). Nitrogen-doped $TiO_2$ exhibits higher activity than the commercial $TiO_2$ photocalyst, particularly under visible-light irradiation because bandgap of nitrogen-doped $TiO_2$ becomes remarkably decreased.