• Title/Summary/Keyword: $N_2$-plasma

Search Result 1,804, Processing Time 0.03 seconds

UV emission characteristics of Ne+$N_2$ gas-mixture discharges in AC Plasma Display Panel

  • Baek, Byung-Jong;Hong, Sang-Min;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.586-589
    • /
    • 2002
  • The Ultra Violet(UV) emission characteristics of Neon + Nitrogen gas-mixture discharge was investigated in AC plasma display panel. The firing voltage of Ne+$N_2$ gas-mixture discharge increased with increasing nitrogen concentration. The UV intensity emitted from the gas discharge also increased with increasing nitrogen concentration. The UV efficiency increase with increasing $N_2$ partial pressure at low $N_2$ concentration, and then UV efficiency is saturated at high $N_2$ concentration.

  • PDF

Infinite Selectivity Etching Process of Silicon Nitride to ArF PR Using Dual-frequency $CH_2F_2/H_2/Ar$ Capacitively Coupled Plasmas (Dual-frequency $CH_2F_2/H_2/Ar$ capacitively coupled plasma를 이용한 실리콘질화물과 ArF PR의 무한 선택비 식각 공정)

  • Park, Chang-Ki;Lee, Chun-Hee;Kim, Hui-Tae;Lee, Nae-Eung
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.137-141
    • /
    • 2006
  • Process window for infinite etch selectivity of silicon nitride $(Si_3N_4)$ layers to ArF photoresist (PR) was investigated in dual frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters such as low frequency power $(P_{LF})$, $CH_2F_2$ and $H_2$ flow rate in $CH_2F_2/H_2/Ar$ plasma. It was found that infinite etch selectivities of $Si_3N_4$ layers to the ArF PR on both blanket and patterned wafers can be obtained for certain gas flow conditions. The etch selectivity was increased to the infinite values as the $CH_2F_2$ flow rate increases, while it was decreased from the infinite etch selectivity as the $H_2$ flow rate increased. The preferential chemical reaction of the hydrogen with the carbon in the polymer film and the nitrogen on the $Si_3N_4$ surface leading to the formation of HCN etch by-products results in a thinner steady-state polymer and, in turn, to continuous $Si_3N_4$ etching, due to enhanced $SiF_4$ formation, while the polymer was deposited on the ArF photoresist surface.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Improved Performance and Suppressed Short-Channel Effects of Polycrystalline Silicon Thin Film Transistors with Electron Cyclotron Resonance $N_2$O-Plasma Gate Oxide (Electron Cyclotron Resonance $N_2$O-플라즈마 게이트 산화막을 사용한 다결정 실리콘 박막 트랜지스터의 성능 향상 및 단채널 효과 억제)

  • 이진우;이내인;한철희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.68-74
    • /
    • 1998
  • Improved performance and suppressed short-channel effects of polysilicon thin film transistors (poly-Si TFTs) with very thin electron cyclotron resonance (ECR) $N_2$O-plasma gate oxide have been investigated. Poly-Si TFTs with ECR $N_2$O-plasma oxide ($N_2$O-TFTs) show better performance as well as suppressed short-channel effects than those with conventional thermal oxide. The fabricated $N_2$O-TFTs do not show threshold voltage reduction until the gate length is reduced to 3 ${\mu}{\textrm}{m}$ for n-channel and 1 ${\mu}{\textrm}{m}$ for p-channel, respectively. The improvements are due to the smooth interface, passivation effects, and strong Si ≡ N bonds.

  • PDF

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

Modeling of CCP plasma with H2/N2 gas (H2/N2 가스론 이용한 CCP 플라즈마 모델링)

  • Shon, Chae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.158-159
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multilayer interconnection layers. In order to reduce the RC delay, low-k materials will be used for inter-metal dielectric (IMD) materials. We have developed self-consistent simulation tool that includes neutral-species transport model, based on the relaxation continuum (RCT) model. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatiotemporal steady state profile could be obtained.

  • PDF

Effect of the Amount of CH4 Content on the Characteristics of Surface Layers of Low Temperature Plasma Nitrocarburizied STS 204Cu Stainless Steel (STS 204Cu 스테인리스강의 저온 플라즈마 침질탄화 처리 시 CH4 가스 함량에 따른 경화층 (S-Phase) 거동)

  • Lee, Insup;Kim, Hojun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Plasma Nitriding treatment was performed on STS 204Cu stainless steel samples at a temperature of $400^{\circ}C$ for 15 hours with varying $N_2$ content as 10%, 15% and 25%. Regardless of the content of $N_2$, S-Phase which is a hardened layer of Nitrogen (N) supersaturated phase, was formed in the surface of plasma treated samples. When $N_2$ content was 25%, the thickness of the hardened layer reached up to about $7{\mu}m$ and the surface hardness reached a value of $560Hv_{0.05}$, which is about 2.5 times higher than that of untreated sample (as received $220Hv_{0.05}$). From potentiodynamic polarization test, it was observed that compared to as received sample, the corrosion potential and the corrosion current density of the plasma treated samples were decreased regardless of the $N_2$ content, but the corrosion resistance was not increased much due to the precipitation of $Cr_2N$. On the other hand, pitting potential of the samples treated with 10% and 15% $N_2$ was higher than that of as received sample, however, the samples treated with 25% exhibited a lower pitting potential. Therefore, 10% $N_2$ content was selected as optimum plasma nitriding condition and to further increase both the thickness and surface hardness and the corrosion resistance of the hardened layer, different $CH_4$ content such as 1%, 3% and 5% was introduced into the plasma nitriding atmosphere. With 1% $CH_4$, the thickness of the hardened layer reached up to about $11{\mu}m$ and the surface hardness was measured as about $620Hv_{0.05}$, which is about 2.8 times that of as received sample. And the corrosion resistance of the plasma treated sample by using 1% $CH_4$ was improved significantly due to much higher pitting potential, and lower corrosion current density. When the $CH_4$ content was more than 1%, the thickness and surface hardness of the hardened layer decreased slightly and the corrosion resistance also decreased.

The Analysis of Nitrogen Plasma Using One-dimensional Self-consistent RF Fluid-Model (유체 모델을 이용한 질소 플라즈마의 특성 분석)

  • 임장섭;소순열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.28-35
    • /
    • 2004
  • $N_2$ has been one of the most useful gases in industrial application, for example, plasma ashing, surface cleaning and decomposition of pollution gases. In order to clarify $N_2$ plasma properties and increase practical applications, many experimental and theoretical investigations have been carried out until now on. In this papa, we examined the characteristics of $N_2$ RF Plasmas using one-dimensional fluid model. $N_2$ plasmas showed a double-layer structure in both sheath regions as the power source voltage becomes higher. Generally, a double-layer structure should be showed in electro-negative plasmas, but not in electro-postive plasmas such as $N_2$ discharge. However, most electrons in $N_2$ plasmas lost their energy by many excitation reactions in the near of both electrodes where electron collisions were actively executed and such continuous reactions during an RF period made this structure strong with increase of the power source voltage. The dependence of $N_2$ plasma properties on pressure was also discussed.

Multi-layer resist (MLR) structure with a very thin DLC layer

  • Kim, H.T.;Kwon, B.S.;Park, S.M.;Lee, N.E.;Cho, H.J.;Hong, B.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.71-72
    • /
    • 2007
  • In this study, we investigated the fabrication of MLR (multi-layer resist) with a very thin diamond-like carbon (DLC) layer. ArF PR/$SiO_2$/DLC MLR structure was investigated and etching characteristics of the DLC layer was patterned using $SiO_2$ hard-mask by varying the process parameters such as different high-frequency/low-frequency combination ($f_{LF}/f_{HF}$), HF/LF power ratio ($P_{HF}/P_{LF}$), $O_2$ flow and $N_2$ flow rate in $O_2/N_2$/Ar plasmas. The results indicated an increased etch rate of DLC for the higher $f_{LF}/f_{HF}$ combination and for the increased low-frequency power ($P_{LF}$). And the etch rate of DLC was decreased with increasing the $N_2$ flow rate in $O_2/N_2$/Ar plasmas. In order to confirm the application of DLC MLR for the etching process of silicon oxide, the stack of ArF PR/BARC/$SiO_2$/DLC/TEOS/Si was investigated.

  • PDF