• Title/Summary/Keyword: $NO_X$ Reduction

Search Result 502, Processing Time 0.034 seconds

Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution (요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사)

  • Nguyen, Thanh D.B.;Kang, Tae-Ho;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.922-930
    • /
    • 2008
  • The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides($NO_x$) reduction by urea-water solution is used to predict $NO_x$ reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For $NH_3$ slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).

Study on the Measurement of Emission Spectrum and Reaction Mechanism of OH Radical in the Nitrogen Corona Discharge System for Removal of $NO_x$ in Flue Gas (배연가스의 $NO_x$제거용 코로나 방전장치에서 OH 발광 스펙트럼 측정 및 관련 반응 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Dong-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • We constructed a wire-cylinder type pulsed corona discharge system for $NO_x$ removal, which was operated in room temperature. A emission spectrometer was built with a boxcar averager and monochrometer equipped with photo-multiplier tube detector. The sensitivity of the emission spectrometer was greatly improved by synchronizing the emission spectrometer with pulsed corona discharge system using a triggered spark-gap switch. $N_2$ spectrum($c^3{\Pi}_u{\rightarrow}X^1{\Sigma}_g{^+}$) was measured in the range of 300 - 450 nm and oxidizing OH radical emission($A^2{\Sigma}^+{\rightarrow}X^2{\Pi}$) was measured in case $N_2$ was supplied with water bubbling. As wet gas composition of inlet $N_2$ supplied in the discharge system increased, the intensity of OH emission was increased and saturated at wet gas composition 50%. We also investigated additive effect of $C_2H_4,\;H_2O,\;H_2O_2$ on the intensity of OR emission and $NO/NO_2/NO_x$ reduction and analysed the related reaction mechanism in corona discharge process. $H_2O_2$ additive increased the intensity of OH emission and $NO/NO_x$ reduction.

  • PDF

A Stud on the Catalytic Removal of Nitric Oxide (질소산화물의 촉매반응에 의한 저감기술에 관한 연구)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Seasonal Nitrogen Oxides Improvement due to On-road Mobile Air Pollution Source Emission Control Plan in Seoul Metropolitan Area (도로이동오염원 대기오염 저감대책에 의한 수도권 지역 계절별 질소산화물 개선효과)

  • Kim, Yoo Jung;Jeong, Hye-Seon;Kim, Suhyang;Ma, Young-Il;Lee, Woo-Keun;Kim, Jeongsoo;Sunwoo, Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.269-278
    • /
    • 2016
  • In order to improve air quality in the Seoul Metropolitan Area (SMA), the "Special Act on Seoul Metropolitan Air Quality Improvement" has been enforced since 2005. The strategy has resulted in some reduction of air pollution, but there has not been much research into the quantitative impact analysis of each separate preventive countermeasure. Therefore, we analyzed nitrogen oxide reduction resulting from implementation of the emission control plan for on-road mobile sources. The MM5-SMOKE-CMAQ model system was employed for air quality prediction. Reduced $NO_x$ emissions for SMA was 16,561 ton, 4.7% of reduction rate, in 2007. One countermeasure, tighter acceptable standards for manufacturing vehicles, dominated other countermeasures for effective $NO_x$ emission control. Large spatial differences in reduced emissions, those for Seoul being twice that of Incheon and Gyeonggi, showed greater $NO_x$ emission reduction impact in the heart of the metropolitan complex. The $NO_2$ concentration decreased by 0.60 ppb (2.0%), 0.18 ppb (1.5%), and 0.22 ppb (1.7%) in Seoul, Incheon, and Gyeonggi, respectively. Concentration decreases in spring and winter were larger, 1.5~2.0 times, than summer and fall. However, the $NO_2$ reduction impact did not correspond directly to local $NO_x$ emission controls in the city area because of the natural flow and dispersion, both urban and downwind.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

$NO_x$ Chemistry Over Rutile $TiO_2$(110) Surfaces

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.131-131
    • /
    • 2012
  • We present our recent temperature-programmed desorption (TPD) study on catalytic reductions of $NO_x$ such as NO, $NO_2$, and $N_2O$ over rutile $TiO_2$(110) surfaces. Our results indicate that $NO_2$/NO readily reacts to give NO/$N_2O$ desorption at the substrate temperature as low as 100 K/70 K. Interestingly, $N_2O$, however, does not dissociate into $N_2$ and $O_{BBO}$ over the oxygen vacancy on the $TiO_2$(110) surface. Successive reduction of NO and $NO_2$ into $N_2O$ and NO, respectively, leaves oxygen atoms on the $TiO_2$(110) surface in a form of $O_{ad}$, which can induce additional reductive channels of NO and $NO_2$ at higher temperatures up to 400 K. During the repeated TPD cycles of $NO_x$, our x-ray photoelectron spectroscopy (XPS) analysis indicates that no N atom accumulates on the $TiO_2$ surface.

  • PDF

A study of hydrocarbon SCR(selective catalytic reduction) on Ag/γ-Al2O3 catalyst (Ag/γ-Al2O3 촉매상에서 탄화수소-SCR(Selective Catalytic Reduction) 연구)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.139-146
    • /
    • 2005
  • Removal of NO contained in automobile exhaust gas was accomplished by the non-selective catalyst reduction method. The catalysts were prepared through loading of a specific amount of Ag into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations for the prepared catalysts. The influence of the structure of catalyst to $NO_x$ conversion was followed through the analysis of the physical properties of the prepared catalysts. Experiments were conducted on each of the catalysts by varying the reaction conditions to find an optimum condition. The catalyst $Ag/{\gamma}-Al_2O_3$ shows a highest $NO_x$ conversion when the Ag content was 2 wt% and a reaction temperature of about $450^{\circ}C$. and after conducting the experiments, samples of before and after experiments analyzed using XRD, XPS, TPR, and UV-Vis DRS experiments. The result indicated that when Ag oxide content could not be maintained well at high temperatures $NO_x$ conversion decreased.

Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019 (대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례 )

  • Hyeonsik Choe;Wonbae Jeon;Dongjin Kim;Chae-Yeong Yang;Jeonghyeok Mun;Jaehyeong Park
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.503-520
    • /
    • 2023
  • In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 40% and, 31%, respectively, the average O3 concentration increased by 4.24 ppb, with the highest O3 change observed in the central region (4.59 ppb). This was attributed to the decrease in O3 titration by nitric oxide (NO) due to the reduction of NOx emissions in Busan, which is classified as a VOCs-limited area. The distribution of O3 concentration changes was closely related to NOx emissions per area, and inland emissions were highly correlated with daily maximum concentrations and 8-h average O3 concentrations. Contrastingly, the effect of emission reduction depended on the wind direction. This suggests that the emission reduction effects may vary depending on the environmental conditions. Further research is needed to comprehensively analyze the emission reduction effects in Busan.

Experimental Investigation of NOX Reduction using a Hybrid Fuel Lean Reburning System (NOx 저감을 위한 하이브리드 연료희박 재연소 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Hwang, Chang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.283-290
    • /
    • 2010
  • The main goal of this study is to examine the use of a hybrid -fuel lean reburning system with air staging for $NO_X$ reduction. The experimental variables include the reburn fuel fraction, sizes of reburn- fuel-injection nozzles, oxygen enrichment ratio, and location of reburn- fuel- injection. The effect of the flow field induced by air- staging combustion on $NO_X$ reduction is considered, and then, the $NO_X$ reduction rate is compared with only fuel lean reburning system. On the basis of the effectiveness of each De-$NO_X$ process, the advantage of using the hybrid reburning system with air staging is determined and discussed.

Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine (중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자)

  • Kim, Hong-Suk;Jeong, Young-Il;Song, Myoung-Ho;Lee, Seang-Wock;Park, Hyun-Dae;Hwang, Jae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.