• Title/Summary/Keyword: $NO_2$ inhibition

Search Result 2,117, Processing Time 0.031 seconds

Inhibitory Effects of Water Extracy of Prunellae Spica on the Production of Pro-inflammatory Mediator in LPS-activated Raw 264.7 Cells (하고초물추출물이 LPS로 활성화된 Raw 264.7 cell에서의 염증매개물질 억제효과)

  • Chang, Hyun-Ju;Park, Sook-Jahr;Lee, Jong-Rok;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.599-607
    • /
    • 2009
  • Prunellae Spica is the spike or whole plant of Prunella vulgaris Linne, which has been used for clearing heat from the liver, brightening the eyes and treating headache in traditional oriental medicines. This study was conducted to evaluate the inhibitory effects of the aqueous extract of Prunellae Spica (PSE; PS extract) on the production of NO and PGE2 in LPS-activated Raw 264.7 cells. Cell viability was determined by MTT assay, and all three doses of PS extract (0.03, 0.1 and 0.3 mg/ml) had no significant cytotoxicity during the entire experimental period. The cells were treated with 1 ${\mu}g/ml$ of LPS 1 h before adding PS extract, and increased NO and PGE2 production were detected in LPS-activated cells compared to control. However, these increases were dose-dependently attenuated by treatment with PS extract. The inhibition of NO by PS extract was due to the suppression of iNOS expression via inhibition of $NF{\kappa}B$ nuclear translocation and proteolytic degradation of $I{\kappa}B{\alpha}$. The decreased level of PGE2 was derived from inhibition of COX-2 activity, but expression of COX-2 protein was not affected by PS extract. Moreover, PS extract reduced the elevated production of IL-${\beta}$ and IL-6 by LPS. These results demonstrate that PS extract has inhibitory effects on the production of NO and PGE2 as a consequence of the reduction of proinflammatory cytokines, especially IL-${\beta}$ and IL-6 in LPS-activated Raw 264.7 cells.

Evaluation of Anti-Inflammatory Effects of Yukmijihwangtang and Individual Drug Substances Based on the Extraction Methods (추출 방법에 따른 육미지황탕의 항염증 작용 평가)

  • Lee, Gui-Hee;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.2
    • /
    • pp.89-107
    • /
    • 2012
  • Objectives: This study was performed to develop therapeutic prescription that is more significant than existing ones through extraction method and formulation changes. Methods: Yukmijihwangtang(YMJHT) was extracted in 80% ethanol, and their relative anti-oxidant activities as well as anti-inflammatory effects through immune modulation were measured. Results: Both water and ethanol extracted YMJHT showed does-dependent DPPH elimination activities. ROS inhibition activity was greater in water extracted YMJHT except for Moutan Cortex. NO inhibition assay results indicated that all groups showed higher NO inhibition activities in RAW 264.7 cells in dose dependent manner. Water extracted group showed higher NO inhibition activity than that of ethanol extracted group. TNF-${\alpha}$ secretion inhibition assay using RAW 264.7 cells, water extracted YMJHT showed higher activity than ethanol extracts. Growth rate of spleen cells was greater in all tested groups, with higher rate in YMJHT-EtOH than YMJHT-DW. Suppression of gene expression of IFN-r in spleen cells stimulated by Con A was higher in YMJHT-EtOH than YMJHT-DW. Suppression of gene expression of IL-10 in spleen cells stimulated by Con A was highest in YMJHT-DW with 40%. Suppression of gene expression of IL-4 in spleen cells stimulated by Con A were significant with 90% or higher in all groups and that of IL-12p35 were also higher than 90% in all cases. Conclusions: From the results, it shows that YMJHT has anti-inflammatory effects through immune modulation. However, the difference between YMJHT-EtOH and YMJHT-DW was not that significant. Further studies are needed to find out effective extraction methods of herbal medicine.

Regulation of circulating Mg2+ in the rat by metabolic inhibition (흰쥐에서 대사작용 억제에 의한 혈중 Mg2+ 조절)

  • Kim, Jong-shick;Kim, Shang-jin;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • Magnesium ($Mg^{2+}$) plays an important role in the regulation of a range of intracellular processes. Regulation of extracellular $Mg^{2+}$ contents was studied in the anesthetized Sprague-Dawley (SD) rats. Animals were injected intraperitoneally with sodium nitrite ($NaNO_2$), and circulating $Mg^{2+}$($[Mg^{2+}]c$) was measured after the injection and then 10 and 20 minutes later. A dose-dependent increase in $[Mg^{2+}]c$ was observed in animals injected with $NaNO_2$ at a dose of 10mg/kg or higher. Pretreatment with methylene blue prevented the $NaNO_2$-induced increase in $[Mg^{2+}]c$. $[Mg^{2+}]c$ displayed an inverse linear correlation with hemoglobin and exponential correlation during $NaNO_2$ injection. Injection of KCN or rotenone also induced an increase in $[Mg^{2+}]c$. An increase in $[Mg^{2+}]c$ was observed when respiration rate was reduced from 100/min (140ml/min) to 10/min (14ml/min) during 30 min. These results indicate that changes in $[Mg^{2+}]c$ inversely reflect alteration of ATP in a model of metabolic inhibition.

  • PDF

Nitric Oxide Inhibition and Procollagen Type I Peptide Synthesis Activities of a Phenolic Amide Identified from the Stem of Lycium chinense Miller

  • Gil, Chan Seam;Jang, Moon Sik;Eom, Seok Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1386-1391
    • /
    • 2017
  • The bioactivities of boxthron fruits, a source of oriental medicine, are well known, whereas phytochemical studies of the boxthorn stem are rare. In this study, the stem extract of boxthorn (Lycium chinense Miller) and its subfractions were evaluated for their effects on nitric oxide (NO) inhibition and procollagen type I peptide (PIP) synthesis. A phenolic amide isolated from the stem extract was also assayed for these effects. The compound, N-trans-feruloyltyramine, was identified by $^1H$, $^{13}C$, and 2D-nuclear magnetic resonance analyses. In NO inhibition, the chloroform fraction (CF) exhibited the strongest inhibitory activity ($MIC_{50}=24.69{\mu}g/ml$) among the subfractions of the ethanol extract (EE). N-trans-feruloyltyramine isolated from the CF showed strong NO inhibitory activity, presenting with an $MIC_{50}$ of $31.36{\mu}g/ml$. The EE, CF, and N-trans-feruloyltyramine shown to have NO inhibition activity were assayed for the activity of PIP synthesis. The EE and CF showed relatively high PIP values of 38.8% and 24.21% at $100{\mu}g/ml$, respectively. The PIP value for $20{\mu}g/ml$ N-trans-feruloyltyramine showed a 36% increase compared with the non-treated control, whereas that treated with $20{\mu}g/ml$ ascorbic acid as a positive control showed a 13% increase. The results suggest that the proper stem extract of boxthorn stem could be efficiently used to produce good cosmetic effects.

Anti-inflammatory, Anti-glycation, Anti-tyrosinase and CDK4 Inhibitory Activities of Alaternin (=7-Hydroxyemodin)

  • Bhatarrai, Grishma;Choi, Jeong-Wook;Seong, Su Hui;Nam, Taek-Jeong;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The aim of this study was to anatomize the therapeutic potential of alaternin (=7-hydroxyemodin) against inflammation, advanced glycation end products (AGEs) formation, tyrosinase, and two cyclin-dependent kinases (CDKs), CDK2 and CDK4, and compare its potency with emodin. Alaternin showed lower cytotoxicity and higher dose-dependent inhibition against lipopolysaccharide (LPS) induced nitric oxide (NO) production with half maximal inhibitory concentration (IC50) of 18.68 µM. Similarly, alaternin efficaciously inhibited biotransformation of fluorescent AGEs and amyloid cross-β structure on the bovine serum albumin (BSA)-glucose-fructose system, five times more than emodin. Interestingly, alaternin also showed selective activity against CDK4 at 170 µM, whereas emodin inhibited both CDK2 and CDK4 at a concentration of 17 and 380 µM respectively. In addition, alaternin showed dose-dependent inhibitory activity against mushroom tyrosinase with inhibition percentage of 35.84 % at 400 µM. Altogether, alaternin with pronounced inhibition against inflammatory mediator (NO), glycated products formation, and targeted inhibition towards CDK4 receptor can be taken as an important candidate to target multiple diseases.

A Curcuminoid and Two Sesquiterpenoids from Curcuma zedoaria as Inhibitors of Nitric Oxide Synthesis in Activated Macrophages

  • Jang, Mi-Kyung;Lee, Hwa-Jin;Kim, Ji-Sun;Ryu , Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1220-1225
    • /
    • 2004
  • The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is known to be responsible for vasodilation and hypotension observed in septic shock and inflammation. Inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by overproduction of NO. In the course of screening oriental anti-inflammatory herbs for the inhibitory activity of NO synthesis, a crude methanolic extract of Curcuma zedoaria exhibited significant activity. The activity-guided fractionation and repetitive chromatographic procedures with the EtOAc soluble fraction allowed us to isolate three active compounds. They were identified as 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one (1), procurcumenol (2) and epiprocurcumenol (3) by spectral data analyses. Their concentrations for the 50% inhibition of NO production $(IC_{50})$ in lipopolysaccharide (LPS)-activated macrophages were 8, 75, 77 ${\mu}M$, respectively. Compound 1 showed the most potent inhibitory activity for NO production in LPS-activated macrophages, while the epimeric isomers, compound 2 and 3 showed weak and similar potency. Inhibition of NO synthesis by compound 1 was very weak when activated macrophages were treated with 1 after iNOS induction. In the immunoblot analysis, compound 1 suppressed the expression of iNOS in a dose-dependent manner. In summary, 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one from Curcuma zedoaria inhibited NO production in LPS-activated macrophages through suppression of iNOS expression. These results imply that the traditional use of C. zedoaria rhizome as anti-inflammatory drug may be explained at least in part, by inhibition of NO production.

Nitric Oxide Modulation of GABAergic Synaptic Transmission in Mechanically Isolated Rat Auditory Cortical Neurons

  • Lee, Jong-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.461-467
    • /
    • 2009
  • The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in the A1 were completely blocked by bicuculline. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reduced the GABAergic sIPSC frequency without affecting the mean current amplitude. The SNAP-induced inhibition of sIPSC frequency was mimicked by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane permeable cyclic-GMP analogue, and blocked by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger. Blockade of presynaptic $K^+$ channels by 4-aminopyridine, a $K^+$ channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic $Ca^{2+}$ channels by $Cd^{2+}$, a general voltage-dependent $Ca^{2+}$ channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic $Ca^{2+}$ channels in the presynaptic nerve terminals of A1 neurons.

Antibacterial and anti-inflammatory effects of Platycodon grandiflorum extracts (도라지 추출물의 항균작용 및 항염작용)

  • Kim, Jung
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.359-366
    • /
    • 2014
  • This study investigated the impact on S. mutans와 C. albicans in order to reveal the antimicrobial activity of Platycodon grandiflorum extracts. In addition, it examined NO generation inhibition rate in accordance with the extract concentration from Raw 264.7 cell in order to find out anti-inflammatory activation. As for the study materials, domestically made 100% Platycodon grandiflorum powder was utilized. As for the experimental strain, S. mutans KCTC 3065 and C. albicalns KCTC 7965 were utilized. Consequently, this study obtained the following results. Growth inhibition rate of S. mutans became significantly higher with higher concentration of Platycodon grandiflorum extracts. Growth inhibition rate of C. albicans became significantly higher with higher concentration of Platycodon grandiflorum extracts. NO generation inhibition rate was found to be 29.2% and 26.1% respectively when adding Platycodon grandiflorum extract with the concentration of 10 and $20{\mu}g/ml$ in Raw 264.7 cells. These results mean that Platycodon grandiflorum could be leveraged as antimicrobial and anti-inflammatory substance.

Comparison of Biological Activities in Crude Extracts of Mantis (사마귀류 추출물의 생물학적 활성 비교)

  • Heo, Jin-Chul;Hwang, Jae-Sam;Kang, Seok-Woo;Yun, Chi-Young;Lee, Sang-Han
    • Current Research on Agriculture and Life Sciences
    • /
    • v.25
    • /
    • pp.7-12
    • /
    • 2007
  • In order to investigate the availability of insect resources for agrobiotechnological or medical purposes, we examined antioxidant (DPPH and FRAP assay) and cell viability by oxidant stress and NO inhibition assay by treatment of the extracts of Statilia maculata Thunberg, Tenodera angustipennis Saussure and Tenodera aridifolia Stoll. We found that Tenodera angustipennis Saussure and Tenodera aridifolia Stoll extract (DW, etanol, methanol) had high levels of anti-oxidant activity, whereas Tenodera aridifolia Stoll extract showed increased cell viability by hydrogen peroxide and inhibition of NO production. These findings suggest that Statilia maculata Thunberg, Tenodera angustipennis Saussure and Tenodera aridifolia Stoll, extract have potentials to be developed for agrobiotechnology or medicinal use, indicating that mechanistic study including inhibition against molecular inflammation will show a possibility for the development of useful insect resources.

  • PDF

Anti-inflammatory Properties of Meso-dihydroguaiaretic Acid in Lipopolysaccharide-induced Macrophage

  • Kim, Yong-Jae;Kang, Yeo-Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.91-95
    • /
    • 2010
  • Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae). It exhibits a neuroprotective effect and also exerts cytotoxicity to certain cancer cells. In the present study, we investigated whether or not MDGA inhibits inflammatory reaction through the inhibition of nitric oxide (NO) generation. The results showed that MDGA (5~$25 {\mu}M$) inhibited 100 ng/ml lipopolysaccharide (LPS)- induced NO generation in macrophage Raw 264.7 cells in a concentration-dependent manner. We also measured the cytotoxic effects of MDGA on Raw 264.7 cells and found no evidence of cytotoxicity. The inhibition of NO generation by MDGA was consistent with the inhibitory effect on the expression of inducible nitric oxide synthase (iNOS). In addition, MDGA inhibited the LPS-induced gene expression of $interleukin-1{\beta}$ $(IL-1{\beta})$ as well as tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$. The present results may provide that MDGA has anti-inflammatory properties through inhibition of the toll-like receptors (TLRs) pathway, and suggest that MDGA can be used as an anti-inflammatory agent.