• Title/Summary/Keyword: $NO_2$ inhibition

Search Result 2,117, Processing Time 0.027 seconds

Anti-inflammatory effect of seed oil of Schisandra chinensis in the LPS-treated RAW 264.7 macrophages (LPS로 자극된 Raw 264.7 대식세포에서 오미자 씨앗오일의 항염증 효과)

  • Jang, Jae-Yoon;Park, Geun-Hye
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.77-82
    • /
    • 2015
  • Objectives : This study was designed to investigate of the anti-inflammatory effects of Schisandra chinensis seed oil(SSO) on the production of pro-inflammatory substances in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages.Methods : SSO was measured the production of pro-inflammatory factor (NO, PGE2, IL-1β iNOS and, COX-2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. we used the following methods : cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, Western blotting analysis.Results : The cell viability of SSO(0∼500 μl/mL) processing group was 96.9% and the processing of SSO didn't have an effect on the cytotoxicity. The inhibitory effect of the nitric oxide (no) production of SSO(500 μg/mL, 50 μg/mL, 10 μg/mL) was each 70.3%, 37.6% and 26.5%. IL-1β production inhibition ability of SSO(500 μg/mL, 100 μg/mL) was each 49.88% and 48.8%. PGE2 production inhibition ability of SSO(500 μg/mL, 100 μg/mL) was each 49.88% and 73.1%, 70.5%. By using SSO, it experimented about iNOS protein expression inhibition ability, that is the NO production enzyme. iNOS protein expression increased in the group processing LPS independently. iNOS protein expression decreased in the group processing SSO together. The expression of the COX-2 protein decreased 89.6%, 81.8% in the group processing SSO. The significance was in the relationship with NO formation inhibition with the relationship with the PGE2 formation inhibition and iNOS protein, it confirmed in SSO with the COX-2 protein.Conclusions : Stimulation of the RAW 264.7 cells with LPS caused an elevated production of nitric oxide (NO), IL-1β and PGE2 which was markedly inhibited by the pretreatment with SSO without causing any cytotoxic effects. The reduced expressions of iNOS protein were consistent with the reductions in NO production in the culture media. SSO may be useful for the treatment of various inflammatory diseases.

Nitro oxide in human cytomegalovirus replication and gene expression

  • Lee, Jee-Yeon;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.152-157
    • /
    • 1997
  • Infection of human fibroblast (HF) cells with human cytomegalovirus (HCMV) result in changes in the intracellular level of second messengers. Since nitric oxide (NO) production has been known to be related with other second messengers, it is probable that HCMV infection of HF cells may involve NO. To test this possibility, the amount of NO was measured following ogenous addition of NO generators such as sodium nitroprusside (SNP) or S-nitroso-N-a-cetylpenicillamine (SNAP) immediately after HCMV infection, however, inhibited virus multiplication. Furthermore, immunoblot experiment using monoclonal antibody to HCMV major immediate early (MIE) proteins or CAT assay using pCMVIE/CAT (plasmid containing CAT gene driven by HCMV MIE promoter) revealed that SNP or SNAP blocked the MIE gene expression. SNP was more effective than SNAP in hibiting HCMV multiplication or MIE gene expression. SNP produced more NO than SNAP in inhibiting HCMV multiplication or MIE gene expression. SNP produced more NO than SNAP. Although the mechanism for the inhibition of HCMV multiplication and MIE gene expression by NO is still elusive some correlation with NO-mediated inhibition of HCMV-induced increase in cytosolic free Ca$\^$2+/ concentration ([Ca$\^$2+/]) was observed. The increase of [Ca$\^$2+/] following HCMV infection was inhibited by SNP, and less effectively by SNAP. Raising [Ca$\^$2+/ with bromo-A23187 partially reversed the SNP block of MIE gene expression. Thus, there appear to e some relationships among NO. [Ca$\^$2+/], and HCMV MIE gene expression.

  • PDF

EFFECT OF CITRIC ACID AND CALCIUM ON DENTAL EROSION (구연산과 칼슘이 치아침식증의 발생에 미치는 영향)

  • Song, In-Gyeong;Lee, Kwang-Hee;Kim, Dae-Eup;Yang, Young-Sook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.454-460
    • /
    • 2005
  • The purpose of study was to observe the effect of calcium and citric acid on the dental erosion of human premolar enamel. Enamel specimens were demineralized in 0.1%, 0.3%, 0.5%, or 1.0% citric acid solutions with 0.05%, 0.1%, or 0.2% calcium for 5, 15, 30, and 60 minutes, and then the surface microhardness of the enamel was measured. The hardness decreased as the concentration of citric acid and the demineralization time increased. Hardness after 5 minutes was 76~90% in case of no calcium and the inhibition of dental erosion by calcium addition was 2??15%. Hardness after 15 minutes was 65~84% in case of no calcium and the inhibition of dental erosion by calcium addition was 3~17%. Hardness after 30 minutes was 53~72% in case of no calcium and the inhibition of dental erosion by calcium addition was 6~22%. Hardness after 60 minutes was 43~66% in case of no calcium and the inhibition of dental erosion by calcium addition was 7~19%. The inhibition was the highest in 1.0% citric acid and 0.2% calcium. In 0.1% citric acid the inhibition increased as the demineralization time increased, but in 0.3% to 1.0% citric acid the inhibition was most high at 30 minutes and decreased a little at 60 minutes. These results suggest that calcium has a inhibitory effect on the citric acid induced dental erosion.

  • PDF

Antioxidant Activity and Anti-inflammatory effects of Sicyos angulatus L. extract (가시박 추출물의 항산화 및 항염증 효과)

  • Kim, Yooun-A;You, Seon-hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.536-544
    • /
    • 2017
  • This study was carried out to find out the physiological activity effect of Sicyos angulatus L. extract which is known as an ecosystem disturbance plant and confirm the availability as a functional cosmetic material. Total polyphenol and flavonoid contents were measured, and DPPH radical scavenging, intracellular ROS, and its inhibitory effect on the expression Nitric oxide of and COX-2 were evaluated. The content of polyphenol and flavonoid was found to be 3.079 mg(CA)/100g and 72 mg(Q)/100g of Sicyos angulatus L. extract and antioxidant activity through high radical scavenging activity was confirmed. ~Significant cytotoxicity was not observed up to a concentration of $100{\mu}g/mL$ in RAW 264.7 cells and HDF cells and concentration-dependent inhibition of ROS production in HDF cells, inhibition of high NO production and inhibition of COX-2 protein expression in RAW 264.7 cells were confirmed. Through these results, we found the possibility of use as a functional cosmetic material with excellent antioxidant effect and antioxidant and anti-inflammatory effects through inhibition of intracellular ROS generation, inhibition of NO generation, and inhibition of COX-2 protein expression.

Inhibition of Nitric Oxide Production and Hyaluronidase Activities from the Combined Extracts of Platycodon grandiflorum, Astragalus membranaceus, and Schisandra chinensis (길경, 황기와 오미자 혼합추출물의 NO 억제활성과 Hyaluronidase 억제활성 효과)

  • Kang, Chang-Ho;Kwak, Dae Young;So, Jae-Seong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.844-850
    • /
    • 2013
  • In this study, the optimal extraction conditions for three medicinal herbs as functional sources against inflammatory and arthritic diseases were developed. Traditional medicinal herbs were screened for their inhibition of hyaluronidase (HAse) activity and nitric oxide (NO) synthesis. For the screening of anti-inflammatory properties, ethanolic extracts of 53 species of traditional medicinal herb were examined. We confirmed that Astragalus membranaceus (A.R.), Schisandra chinensis (S.F.), and Platycodon grandiflorum (P.G.) inhibit NO production. For extraction from all three herbs simultaneously, an ethanol concentration of 95%, a 1:2:1 mixture ratio, and at 50 rpm mixing speed, for over 12 h and at $30^{\circ}C$ was the best condition for optimal extract yield and NO inhibition effects. HAse inhibition from the three herb extraction was three fold higher than single samples. The ethanol extracts were fractionated with various solvents (n-hexane, chloroform, ethyl acetate, n-butanol, and water). The ethyl acetate-soluble fraction of the herb mixture showed the highest extract yield (13%) and NO inhibition effects (73%). In conclusion, this study provides experimental evidence that a mixture of P.G., A.R., and S.F. could be used as a source of antioxidant ingredients in the food industry.

Introduction, Development, and Characterization of Supernodulating Soybean Mutant -Nitrate Inhibition of Nodulation and Nitrogen Fixation in Supernodulating Soybean Mutant-

  • Lee, Hong-Suk;Lee, Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.23-27
    • /
    • 1998
  • Inhibition of nodule formation and nitrogen fixation by soil nitrogen, primarily nitrate, is well known in legume plants. The present study was undertaken to evaluate the effect of ${NO_3}^-$ on the nodulation, nitrogenase activity, and growth of supernodulating soybean mutant and its wild type. A greenhouse study was conducted to compare two of supernodulating mutants, 'SS2-2' and 'nts 382', with the normal nodulating cultivar 'Sinpaldalkong 2' when grown in a 1-l styroform cup filled with sand, and fertilized with five levels of ${NO_3}^-$ (0, 2, 4, 8, and 12 mM). During the growth period, each plant was supplied two or three times a week with 50 mL of nutrient solution. Supernodulating soybean mutants, SS2-2 and nts 382, showed more nodules and nodule mass, and greater $C_2\;H_2$ activity than the wild type, Sinpaldalkong 2, regardless of the level of exogeneous nitrogen supply. On the other hand, total dry weight of SS2-2 mutant, which was smaller than Sinpaldalkong 2, did not respond to the various ${NO_3}^-$-N levels. This suggested that supernodulating SS2-2 mutant could maintain fairly high total dry weight at the low ${NO_3}^-$-N level, even in the absence of exogeneous ${NO_3}^-$-N in the nutrient solution. From the reduced top growth and high nitrogen fixing ability of supernodulating mutants, it was surmised that supernodulating mutant could potentially protect agricultural environments from pollution through the reduction in nitrogen fertilization as well as maintain fairly high yield with increasing planting density.

  • PDF

Rodgersia podophylla Leaves Suppress Inflammatory mediators through activation of Nrf2/HO-1 signaling, and inhibition of LPS-induced NF-κB and MAPKs signaling in RAW264.7 cells

  • Kim, Ha Na;Kim, Jeong Dong;Park, Su Bin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.94-94
    • /
    • 2019
  • In this study, we elucidated the anti-inflammatory mechanisms of leaves extracts from Rodgersia podophylla (RPL) in RAW264.7 cells. RP-L significantly inhibited the production of the proinflammatory mediators such as NO, iNOS, IL-$1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. RPL increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of RPL against LPS-induced NO production in RAW264.7 cells. Inhibition of p38, ROS and $GSK3{\beta}$ attenuated RPL-mediated HO-1 expression. Inhibition of ROS inhibited p38 phosphorylation and $GSK3{\beta}$ expression induced by RPL. In addition, inhibition of $GSK3{\beta}$ blocked RPL-mediated p38 phosphorylation. RPL induced nuclear accumulation of Nrf2, and Inhibition of p38, ROS and $GSK3{\beta}$ abolished RPL-mediated nuclear accumulation of Nrf2. Furthermore, RPL blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65. RP-L also attenuated LPS-induced phosphorylation of ERK1/2 and p38. Our results suggest that RPL exerts potential antiinflammatory activity by activating ROS/$GSK3{\beta}$/p38/Nrf2/HO-1 signaling and inhibiting NF-${\kappa}B$ and MAPK signaling in RAW264.7 cells. These findings suggest that RPL may have great potential for the development of anti-inflammatory drug.

  • PDF

Structural Analysis and Biological Activities of Sesquiterpene Lactones Isolated from the Leaves and Stems of Chrysanthemum boreale Makino (산국의 잎과 줄기에서 분리한 Sesquiterpene Lactone들의 구조규명 및 생리활성)

  • Lee, Jong Rok;Park, Moon Ki
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1285-1295
    • /
    • 2017
  • Chrysanthemum boreale Makino is widely distributed in Korea, China, Japan and Southeast Asian countries. C. boreale is one of the herbs used for treating various inflammatory diseases in oriental medicine. The present study was conducted to identify biologically active compounds from the leaves and stems of C. boreale. We isolated two sesquiterpene sactones from the leaves and stems of C. boreale using silica gel column chromatography and recyclic high perfomance liquid chromatography. The lactones were characterized by their spectroscopic data (NMR, IR, MASS). These compounds were subjected to Farnesyl Protein Transferase (FPTase) inhibition, Nitric Oxide (NO) release inhibition and apoptosis inhibition. The structur of the following isolated compound were elucidated 8,10-${\small{O}$-Acetyl-2-methoxy-10-hydroxy-3,11(13)-guaiadiene-12,6-olide and 4,10-dihydroxy-8-${\small{O}$-Acetyl-2,11(13)-guaiadiene-12,6-olide. In the NO release inhibition assay, compound 2 showed strong activities, with an $IC_{50}$ value of $7{\mu}g/mL$, whereas compound 1 did not exhibit significant activity with an $IC_{50}$ value of over $14{\mu}g/mL$ against murine macrophage.

Effect of Magnesium Sulfate on Product Inhibition of Sisomicin Production

  • Shin, Chul-Soo;Han, Sang-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.96-99
    • /
    • 1995
  • Addition of l00mM $MgSO_4$ to a cell culture after 54 hours resulted in a 2.4-fold increase in the sisomicin titre compared to a control to which no $MgSO_4$ was added, and a considerable amount of intracellular sisomicin was liberated outside the cells. The occurrence of product inhibition in fermentation was confirmed by a reduction in net sisomicin production with increasing amounts of added sisomicin without addition of $MgSO_4$. All added sisomicin was bound to sisomicin-free cells in the absence of $MgSO_4$, whereas approximately 40% of added sisomicin was bound with the addition of l00mM $MgSO_4$. Under conditions of no enzmye synthesis, maintained by adding chloramphenicol to exclude product repression, sisomicin was produced in the presence of 100 mM $MgSO_4$ but little sisomicin was produced in the absence of $MgSO_4$.

  • PDF

Effects of subfractions of Coptidis Rhizoma extract on the nitric oxide production in LPS-stimulated BV2 microglial cells (황련 추출물의 분획화 및 BV2 microglial cells에서 LPS에 의해 유도되는 nitric oxide 생성억제효과 검정)

  • Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • Objectives : Uncontrolled activation of microglia may directly toxic to neurons by releasing various substances such as inflammatory cytokines, nitric oxide(NO), prostaglandin E2 and superoxide. In this study, the effects of the several subfractions isolated from Coptidis Rhizoma extract were investigated on NO production in LPS-stimulated BV2 microglial cells, Methods : Coptidis Rhizoma extract prepared with 80% methanol, and then fractionated with ethylacetate, chloroform, n-butanol and water. BV2 cells were pretreated four subfractions of Coptidis Rhizoma with various concentrations, and then stimulated with LPS. Cytotoxicity of each fraction was measured by MTT assay. NO production was determined in culture surpernatants by Griess reagent. Results : Ethylacetate, chloroform and butanol fractions of Coptidis Rhizoma extract significantly decreased LPS-induced NO production in BV2 cells as a dose-dependent manner without cytotoxicity. Ethylacetate fraction of Coptidis Rhizoma extract was most effective on inhibition of NO production in LPS-stimulated BV2 cells compared with other fractions. Conclusion : This data indicates that Ethylacetate fraction of Coptidis Rhizoma extract shows strong antiinflammatory effects through inhibition of LPS-induced microglial activation.

  • PDF